1 / 45

Partners for Mathematics Learning

PARTNERS for Mathematics Learning Grade 6 Module 5. Partners for Mathematics Learning. 2. Make the Sale  Richie Real is interested in buying a piece of property so that he can build a house  The property lots are shown on the grid sheet  Each square represents 100 square feet

dominica
Télécharger la présentation

Partners for Mathematics Learning

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PARTNERS forMathematicsLearning Grade6 Module5 Partners forMathematicsLearning

  2. 2 MaketheSale RichieRealisinterestedinbuyingapiece ofpropertysothathecanbuildahouse Thepropertylotsareshownonthegrid sheet Eachsquarerepresents100squarefeet Usingcompositeshapes,findtheareaof eachpieceofproperty Partners forMathematicsLearning

  3. 3 MaketheSale Eachlotcosts$20,000 Ashisfinancialadvisor,decidewhich pieceofpropertyisthebestbuy WriteMr.Realaletterjustifyingyour choiceusingyourcalculationsandthe additionalinformationprovided Partners forMathematicsLearning

  4. 4 MaketheSale Compareyourcompositeshapeswith otherparticipantsinyourgroup Readyourletterstoyourgroup Chooseonelettertosharewiththewhole group Partners forMathematicsLearning

  5. 5 MaketheSale Whatotheractivities haveyouusedto teachcompositeshapes? Whatwouldyoudotochangethisactivity tochallengestudents? Partners forMathematicsLearning

  6. 6 MaketheSale Whatwouldyoudotopreparestudents beforetheactivity? Whatguidingquestionswouldyouask studentsduringthisactivity? Howwouldyouhavestudentsshare findingsaftertheactivity? Partners forMathematicsLearning

  7. 7 What’stheAngle?  Usingapieceofnotebookpaper followtheseinstructions: Foldthepapervertically(hotdogstyle) inhalf Partners forMathematicsLearning

  8. 8 What’stheAngle?  Usingthesamepieceofnotebookpaper followtheseinstructions: Foldthepapervertically(hotdogstyle)in half Oncemore,foldthepaperverticallyinhalf Partners forMathematicsLearning

  9. 9 What’stheAngle?  Usingthesamepieceofnotebookpaper followtheseinstructions: Foldthepapervertically(hotdogstyle) inhalf Oncemore,foldthepaperverticallyinhalf Openthepaperandfoldithorizontally (hamburgerstyle) Partners forMathematicsLearning

  10. 10 What’stheAngle?  Usingthissamepieceofnotebookpaper followtheseinstructions: Usearulerandamarkerandtracethe verticallinesegmentinthemiddleofthe page Thislinesegmentiscalledatransversal Partners forMathematicsLearning

  11. 11 What’stheAngle? Intheupperleftquadrant,markapointon theleftverticalfoldandlabelitPointA Intheupperrightquadrant, markapointontheright verticalfoldthatisloweron thepagethanbelowPointA (stillinupperrightquadrant) LabelitPointB Partners forMathematicsLearning

  12. 12 What’stheAngle? Intheupperleftquadrant, markapointontheleftverticalfoldand labelitPointA Intheupperrightquadrant,markapoint ontherightverticalfoldthatisloweron thepagethanbelowPointAandlabelit PointB DrawalinesegmentbetweenPointsA andB Partners forMathematicsLearning

  13. 13 What’stheAngle? DrawalinesegmentbetweenPointsA andB Inthelowerleftquadrant,markapointon theleftverticalfoldandlabelitPointC Inthelowerrightquadrant,markapoint anywhereontheleftverticalfoldinthat quadrantandlabelitPointD ConnectpointsCandD Partners forMathematicsLearning

  14. 14 What’stheAngle? Ontheleftsideofthetransversal, labeltheanglesformedas1,2,3,and4 Ontherightsideofthetransversal,label theanglesformedas5,6,7,and8 CompletetheWhat’stheAnglehandout andbereadytodiscussyouranswers Partners forMathematicsLearning

  15. 15 What’stheAngle? WhyaretheanglesaboveLineAB andbelowLineCDarecalledexteriorangles? WhyaretheanglesbelowLineABandabove LineCDarecalledinteriorangles? Whichpairsofanglesaresupplementary? Whatothertypesofanglescanwediscuss usingthismodel? Partners forMathematicsLearning

  16. 16 VocabularyCheck Listthevocabularythatstudents mustunderstandtocompletethisactivity Sinceweknowthatstudentsneedmultiple experiencestointernalizenewconcepts, whatadditionalexperienceswouldyou suggestforhelpingthemlearnthe vocabulary? Partners forMathematicsLearning

  17. 17 What’stheAngle? Whatbasicunderstandingsdo studentsneedaboutangles? Whatskillsaretheyexpectedtodevelop? Whatproblemsolvingactivitycouldbeused nexttoengagestudentsinlearningthese concepts? Partners forMathematicsLearning

  18. 18 MakingConnectionswith GCFandLCMPart1 Whatchallengesdoyoufacewhen teachingthegreatestcommonfactorand theleastcommonmultiple? Whatactivitiesdoyouusetomakethe conceptsmeaningfultostudents? Partners forMathematicsLearning

  19. 19 MakingConnectionswith GCFandLCMPart1 Inpairs,usesnapcubestobuildthepossible rectangularprismswithavolumeof12 RecordyourresultsontheMaking ConnectionswithGCF–LCMactivitysheet Inpairs,usesnapcubestobuildthepossible rectangularprismswithavolumeof16, recordyourresults Partners forMathematicsLearning

  20. 20 MakingConnectionswith GCFandLCMPart1 Whatconnectionscanbemadeamong thedimensionsoftherectangularprisms, thefactorsof12and16,andthegreatest commonfactor? Partners forMathematicsLearning

  21. 21 MakingConnectionswith GCFandLCMPart1 Inpairs,usesnapcubestobuildthepossible rectangularprismswithavolumeof8 RecordyourresultsontheMakingConnections withGCF–LCMactivitysheet Inpairs,usesnapcubestobuildthepossible rectangularprismswithavolumeof24,record yourresults Partners forMathematicsLearning

  22. 22 MakingConnectionswith GCFandLCMPart1 Whatconnectionscanbemadeamongthe dimensionsoftherectangularprisms,the factorsof8and24,andthegreatest commonfactor? Partners forMathematicsLearning

  23. 23 MakingConnectionswith GCFandLCMPart2 Inpairs,buildRectangularPrism1with dimensionsof1x2x3(dimensionsoffirst layer) BuildRectangularPrism2withdimensions of1x3x3(dimensionsoffirstlayer) Whatdothesetwoprismshavein common? Partners forMathematicsLearning

  24. 24 MakingConnectionswith GCFandLCMPart2 Calculatethevolumesofthetwo rectangularprismsandrecordyourresults onthehandout Stackanotherlayerofcubesontopof eachrectangularprism Recordthedimensionsandthevolume afterthesecondlayer Partners forMathematicsLearning

  25. 25 MakingConnectionswith GCFandLCMPart2 Stackathirdlayerofcubesontopof RectangularPrism1 Recordthedimensionsandthevolume afterthethirdlayer Partners forMathematicsLearning

  26. 26 MakingConnectionswith GCFandLCMPart2 CompareandcontrastRectangularPrism 1andRectangularPrism2 Whatconnectioncanbemadebetween theoriginalvolumesandthefinalvolumes of18? Partners forMathematicsLearning

  27. 27 MakingConnectionswith GCFandLCMPart2 Repeattheprocesswithnewprismsof size1x2x5(Prism1)and1x2x6 (Prism2) Continueaddinglayersandrecordingnew dimensionsandvolumestofindtheleast commonmultiple Partners forMathematicsLearning

  28. 28 MakingConnectionswith GCFandLCMPart2 CompareandcontrastRectangular Prism1andRectangularPrism2 Whatistheleastcommonmultipleof 10and12? Partners forMathematicsLearning

  29. 29 MakingConnectionswith GCFandLCMPart2 Howdoesusinggeometricmodelshelp studentsconceptualizegreatestcommon factorandleastcommonmultiple? Howwouldyouusethisactivityin yourclassroom? Whatothermodelsoractivitieshelp studentsconceptualizeGCFandLCM? Partners forMathematicsLearning

  30. 30 MysteryNumberPairs Findapairofnumbersthatsatisfytheclues Aftereachclue,youmaychangeyournumbers Clue1:Thegreatestcommonfactoris7 Partners forMathematicsLearning

  31. 31 MysteryNumberPairs Clue1:Thegreatestcommonfactoris7 Clue2:Bothofthesenumbershave2digits Partners forMathematicsLearning

  32. 32 MysteryNumberPairs Clue1:Thegreatestcommonfactoris7 Clue2:Bothofthesenumbershave2digits Clue3:Theleastcommonmultipleis70 Partners forMathematicsLearning

  33. 33 MysteryNumberPairs Clue1:Thegreatestcommonfactoris7 Clue2:Bothofthesenumbershave2digits Clue3:Theleastcommonmultipleis70 Clue4:Oneofthenumbersisevenandthe otherisodd Andtheansweris… Partners forMathematicsLearning

  34. 34 MysteryNumberPairs Clue1:Thetwonumbersaregreaterthan15 Partners forMathematicsLearning

  35. 35 MysteryNumberPairs Clue1:Thetwonumbersaregreaterthan15 Clue2:Thegreatestcommonfactoris12 Partners forMathematicsLearning

  36. 36 MysteryNumberPairs Clue1:Thetwonumbersaregreaterthan15 Clue2:Thegreatestcommonfactoris12 Clue3:Thesumofthetwonumbersis60 Partners forMathematicsLearning

  37. 37 MysteryNumberPairs Clue1:Thetwonumbersaregreaterthan15 Clue2:Thegreatestcommonfactoris12 Clue3:Thesumofthetwonumbersis60 Clue4:Theleastcommonmultipleis72 Andtheansweris… Partners forMathematicsLearning

  38. 38 MysteryNumberPairs Workwithapartneranddevelop anewsetofclues Shareyourclueswithanotherpair ofparticipants Thenwithyouroriginalpartner,createa setoffourcluesthatwillresultinthepair 15and40 Shareyourclueswiththeentiregroup Partners forMathematicsLearning

  39. 39 MysteryNumberPairs Howcantheseactivitiesbeusedasan assessmentofstudentunderstanding? Ifastudentdidnotgetthecorrectpair, whatquestionswouldyouasktoidentifyif theproblemisamisconceptionoranerror infollowingthecluescorrectly? Partners forMathematicsLearning

  40. 40 NeverSayAnythingaKidCanSay ReadNeverSayAnythingaKid CanSaybyStevenC.Reinhart Respondtothefollowingquestionsasyouread: Whatstrategies/suggestionsresonatedwithyour owninstruction? Whatisonethingyouwillchangeaboutyour instructionafterreadingthisarticle? Knowingthatyourcolleaguesmayormaynot havetimetoreadthisarticle,whatthreeideas wouldyouchoosetosharewithyourcolleagues? Partners forMathematicsLearning

  41. 41 NeverSayAnythingaKidCanSay Beforetheprofessionaldevelopment forModule6,besuretoreviewthis article Thereferenceis: Reinhart,S.NeverSayAnythingaKidCan Say,MathematicsTeachingintheMiddle School,Volume.5,Number8,April2000, pp478-483 Partners forMathematicsLearning

  42. 42 DPIMathematicsStaff EverlyBroadway,ChiefConsultant ReneeCunninghamKittyRutherford RobinBarbourMaryH.Russell CarmellaFairJohannahMaynor AmySmith PartnersforMathematicsLearningisaMathematics-Science PartnershipProjectfundedbytheNCDepartmentofPublicInstruction. Permissionisgrantedfortheuseofthesematerialsinprofessional developmentinNorthCarolinaPartnersschooldistricts. Partners forMathematicsLearning

  43. 43 PMLDisseminationConsultants SusanAllman JuliaCazin RuafikaCobb AnnaCorbett GailCotton JeanetteCox LeanneDaughtry LisaDavis RyanDougherty ShakilaFaqih PatriciaEssick DonnaGodley ShanaRunge YolandaSawyer PennyShockley PatSickles NancyTeague MichelleTucker KanekaTurner BobVorbroker JanWessell DanielWicks CarolWilliams StacyWozny CaraGordon TeryGunter BarbaraHardy KathyHarris JulieKolb ReneeMatney TinaMcSwain MarilynMichue AmandaNorthrup KayonnaPitchford RonPowell SusanRiddle JudithRucker Partners forMathematicsLearning

  44. 44 2009Writers PartnersStaff KathyHarris RendyKing TeryGunter JudyRucker PennyShockley NancyTeague JanWessell StacyWozny AmandaBaucom JulieKolb FredaBallard,Webmaster AnitaBowman,OutsideEvaluator AnaFloyd,Reviewer MeghanGriffith,AdministrativeAssistant TimHendrix,Co-PIandHigherEd BenKlein,HigherEducation KatieMawhinney,Co-PIandHigherEd WendyRich,Reviewer CatherineStein,HigherEducation PleasegiveappropriatecredittothePartners forMathematicsLearningprojectwhenusingthe materials. JeaneJoyner,Co-PIandProjectDirector Partners forMathematicsLearning

  45. PARTNERS forMathematicsLearning Grade6 Module5 Partners forMathematicsLearning

More Related