1 / 15

Mastering Quadratic Equations by Factoring: Examples and Solutions

Explore how to solve quadratic equations by factoring with detailed examples and step-by-step solutions. Verify answers using the Zero Product Property. Practice identifying solutions and checking them for accuracy.

donaldjames
Télécharger la présentation

Mastering Quadratic Equations by Factoring: Examples and Solutions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Warm Up • Find each product. • 1. (x + 2)(x + 7) 2. (x – 11)(x + 5) • 3. (x – 10)2 • Factor each polynomial. • 4. x2 + 12x + 35 5. x2 + 2x – 63 • 6. x2 – 10x + 16 7. 2x2 – 16x + 32 x2 + 9x + 14 x2 – 6x – 55 x2 – 20x + 100 (x + 5)(x + 7) (x– 7)(x + 9) (x – 2)(x – 8) 2(x – 4)2

  2. 9-6 Solving Quadratic Equations by Factoring Holt Algebra 1

  3. Example 1A: Use the Zero Product Property Use the Zero Product Property to solve the equation. Check your answer. (x – 7)(x + 2) = 0 Use the Zero Product Property. x – 7 = 0 or x + 2 = 0 Solve each equation. x = 7 or x = –2 The solutions are 7 and –2.

  4. Check(x – 7)(x + 2) = 0 (–2 – 7)(–2+ 2) 0 (–9)(0) 0  0 0 Check(x – 7)(x + 2) = 0 (7 – 7)(7+ 2) 0 (0)(9) 0  0 0 Example 1A Continued Use the Zero Product Property to solve the equation. Check your answer. Substitute each solution for x into the original equation.

  5. Check (x – 2)(x) = 0 (x – 2)(x) = 0 (0 – 2)(0) 0 (2 – 2)(2) 0 (0)(2) 0 (–2)(0) 0   0 0 0 0 Example 1B: Use the Zero Product Property Use the Zero Product Property to solve each equation. Check your answer. (x – 2)(x) = 0 (x)(x – 2) = 0 Use the Zero Product Property. x= 0 or x – 2 = 0 Solve the second equation. x = 2 The solutions are 0 and 2. Substitute each solution for x into the original equation.

  6. x = 4 or x = 2 The solutions are 4 and 2. Check Check x2 – 6x + 8 = 0 x2 – 6x + 8 = 0 (4)2 – 6(4) + 8 0 (2)2 – 6(2) + 8 0 16 – 24 + 8 0 4 – 12 + 8 0   0 0 0 0 Example 2A: Solving Quadratic Equations by Factoring Solve the quadratic equation by factoring. Check your answer. x2 – 6x + 8 = 0 (x – 4)(x – 2) = 0 Factor the trinomial. x – 4 = 0 or x – 2 = 0 Use the Zero Product Property. Solve each equation.

  7. x2 + 4x = 21 –21 –21 x2 + 4x – 21 = 0 x = –7 or x =3 The solutions are –7 and 3. Example 2B: Solving Quadratic Equations by Factoring Solve the quadratic equation by factoring. Check your answer. x2 + 4x = 21 The equation must be written in standard form. So subtract 21 from both sides. (x + 7)(x –3) = 0 Factor the trinomial. x + 7 = 0 or x – 3 = 0 Use the Zero Product Property. Solve each equation.

  8. –2x2 = 20x + 50 +2x2 +2x2 0 = 2x2 + 20x + 50 Example 2D: Solving Quadratic Equations by Factoring Solve the quadratic equation by factoring. Check your answer. –2x2 = 20x + 50 The equation must be written in standard form. So add 2x2 to both sides. 2x2 + 20x + 50 = 0 Factor out the GCF 2. 2(x2 + 10x + 25) = 0 Factor the trinomial. 2(x + 5)(x + 5) = 0 2 ≠ 0 or x + 5 = 0 Use the Zero Product Property. x = –5 Solve the equation.

  9. Check It Out! Example 2c Solve the quadratic equation by factoring. Check your answer. 30x = –9x2 – 25 Write the equation in standard form. –9x2 – 30x – 25 = 0 –1(9x2 + 30x + 25) = 0 Factor out the GCF, –1. –1(3x + 5)(3x + 5) = 0 Factor the trinomial. –1 ≠ 0 or 3x + 5 = 0 Use the Zero Product Property. – 1 cannot equal 0. Solve the remaining equation.

  10. Check It Out! Example 3 What if…? The equation for the height above the water for another diver can be modeled by h = –16t2 + 8t + 24. Find the time it takes this diver to reach the water. h = –16t2 + 8t + 24 The diver reaches the water when h = 0. 0 = –16t2 + 8t + 24 0 = –8(2t2 – t – 3) Factor out the GFC, –8. 0 = –8(2t – 3)(t + 1) Factor the trinomial.

  11. 0 –16(1.5)2 + 8(1.5) + 24 0 –36 + 12 + 24 0 0 Check It Out! Example 3 Continued Use the Zero Product Property. –8 ≠0, 2t – 3 = 0 or t + 1= 0  2t = 3 or t = –1 Solve each equation. Since time cannot be negative, –1 does not make sense in this situation. t = 1.5 It takes the diver 1.5 seconds to reach the water. Check 0 = –16t2 + 8t + 24 Substitute 1 into the original equation. 

  12. Lesson Quiz: Part I • Use the Zero Product Property to solve each equation. Check your answers. • 1. (x – 10)(x + 5) = 0 • 2. (x + 5)(x) = 0 • Solve each quadratic equation by factoring. Check your answer. • 3. x2 + 16x + 48 = 0 • 4. x2 – 11x = –24 10, –5 –5, 0 –4, –12 3, 8

  13. Lesson Quiz: Part II 1, –7 5. 2x2 + 12x – 14 = 0 6. x2 + 18x + 81 = 0 –9 –2 7. –4x2 = 16x + 16 8. The height of a rocket launched upward from a 160 foot cliff is modeled by the function h(t) = –16t2 + 48t + 160, where h is height in feet and t is time in seconds. Find the time it takes the rocket to reach the ground at the bottom of the cliff. 5 s

More Related