1 / 75

Title

Title. TU Darmstadt, Physik Kolloquium, 23. November 2007. Neutrinos in Astrophysics and Cosmology. Georg Raffelt, Max-Planck-Institut für Physik, München. Pauli’s Explanation of the Beta Decay Spectrum (1930). Niels Bohr: Energy not conserved in the quantum domain?. “Neutrino”

dora
Télécharger la présentation

Title

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Title TU Darmstadt, Physik Kolloquium, 23. November 2007 Neutrinos in Astrophysics and Cosmology Georg Raffelt, Max-Planck-Institut für Physik, München

  2. Pauli’s Explanation of the Beta Decay Spectrum (1930) Niels Bohr: Energy not conserved in the quantum domain? “Neutrino” (E.Fermi) “Neutron” (1930) “Neutron” (1930) Wolfgang Pauli (1900-1958) Nobel Prize 1945

  3. Periodic System of Elementary Particles Quarks Quarks Leptons Leptons Charge +2/3 Charge +2/3 Charge -1/3 Charge -1/3 Charge -1 Charge -1 Charge 0 Charge 0 1st Family u Up u Up d d Down Down e Electron Electron e e-Neutrino e-Neutrino ne ne 2nd Family Charm c s Strange m Muon nm m-Neutrino 3rd Family t Top Bottom b Tau t nt t-Neutrino Neutron Gravitation Weak Interaction Proton Electromagnetic Interaction (QED) Strong Interaction (QCD)

  4. Where do Neutrinos Appear in Nature? Nuclear Reactors  Sun  Supernovae (Stellar Collapse) Particle Accelerators  SN 1987A Earth Atmosphere (Cosmic Rays)  Astrophysical Accelerators Soon ? Earth Crust (Natural Radioactivity)  Cosmic Big Bang (Today 330 n/cm3) Indirect Evidence

  5. Neutrinos from the Sun Hans Bethe (1906-2005, Nobel prize 1967) Thermonuclear reaction chains (1938) Helium Reaction- chains Energy 26.7 MeV Solar radiation: 98 % light 2 % neutrinos At Earth 66 billion neutrinos/cm2 sec

  6. Bethe’s Classic Paper on Nuclear Reactions in Stars No neutrinos from nuclear reactions in 1938 …

  7. Gamow & Schoenberg, Phys. Rev. 58:1117 (1940)

  8. Sun Glasses for Neutrinos? 8.3 light minutes Several light years of lead needed to shield solar neutrinos Bethe & Peierls 1934: “… this evidently means that one will never be able to observe a neutrino.”

  9. First Detection (1954 -1956) Anti-Electron Neutrinos from Hanford Nuclear Reactor 3 Gammas in coincidence n Cd p e+ e- g g g Clyde Cowan (1919 – 1974) Fred Reines (1918 – 1998) Nobel prize 1995 Detector prototype

  10. First Measurement of Solar Neutrinos Inverse beta decay of chlorine 600 tons of Perchloroethylene Homestake solar neutrino observatory (1967-2002)

  11. Cherenkov Effect Light Electron or Muon (Charged Particle) Neutrino Light Cherenkov Ring Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Elastic scattering or CC reaction Water

  12. Super-Kamiokande Neutrino Detector 42 m 39.3 m

  13. Super-Kamiokande: Sun in the Light of Neutrinos Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt

  14. Solar Neutrino Spectrum 7-Be line measured by Borexino (2007)

  15. BOREXINO • Neutrino electron scattering • Liquid scintillator technology • (~ 300 tons) • Low energy threshold • (~ 60 keV) • Online since 16 May 2007 • Expected without flavor oscillations 75 ± 4 c/100t/d • Expected with oscillations 49 ± 4 c/100t/d • BOREXINO result (August 07) 47 ± 7stat ± 12sysc/100t/d

  16. Neutrino Flavor Oscillations Two-flavor mixing Each mass eigenstate propagates as with Phase difference implies flavor oscillations Probabilitynenm sin2(2q) Bruno Pontecorvo (1913 – 1993) Invented nu oscillations z Oscillation Length

  17. Mixing of Neutrinos with Different Mass Electron neutrino Neutrino mass m1 n n n n n Mass m1 Mass m1 Mass m1 Mass m1 Mass m1 n Neutrino mass m2 n Mass m2 = m1 Mass m2 > m1 Mass m2 > m1 Mass m2 > m1 Mass m2> m1 Neutrino propagation as a wave phenomenon Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt

  18. Neutrino Oscillations Mass m1 Mass m2> m1 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Oscillation length

  19. Neutrino Oscillations Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Oscillation length

  20. Three-Flavor Neutrino Parameters Atmospheric/K2K CHOOZ Solar/KamLAND 2s ranges hep-ph/0405172 Solar 75-92 Atmospheric 1400-3000 d CP-violating phase Normal Inverted 2 3 e e m m t t Sun Atmosphere 1 e e m m t t m m t t Atmosphere 2 Sun 1 3 • Tasks and Open Questions • Precision for q12 andq23 • How large is q13? • CP-violating phase d? • Mass ordering? • (normal vs inverted) • Absolute masses? • (hierarchical vs degenerate) • Dirac or Majorana?

  21. Sanduleak -69 202 Supernova 1987A23 February 1987 Tarantula Nebula Large Magellanic Cloud Distance 50 kpc (160.000 light years) Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt

  22. Crab Nebula Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt

  23. Stellar Collapse and Supernova Explosion Main-sequence star Onion structure Helium-burning star Collapse (implosion) Hydrogen Burning Helium Burning Hydrogen Burning Degenerate iron core: r 109 g cm-3 T  1010 K MFe 1.5 Msun RFe 8000 km

  24. Stellar Collapse and Supernova Explosion Newborn Neutron Star Collapse (implosion) Explosion ~ 50 km Neutrino Cooling Proto-Neutron Star r  rnuc= 31014 g cm-3 T  30 MeV

  25. Stellar Collapse and Supernova Explosion Newborn Neutron Star ~ 50 km Gravitational binding energy Eb 3  1053 erg  17% MSUN c2 This shows up as 99% Neutrinos 1% Kinetic energy of explosion (1% of this into cosmic rays) 0.01% Photons, outshine host galaxy Neutrino Cooling Neutrino luminosity Ln 3  1053 erg / 3 sec  3  1019LSUN While it lasts, outshines the entire visible universe Proto-Neutron Star r  rnuc= 31014 g cm-3 T  30 MeV

  26. Neutrino Signal of Supernova 1987A Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty 1 min Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty 50 ms Baksan Scintillator Telescope (Soviet Union), 200 tons Random event cluster ~ 0.7/day Clock uncertainty +2/-54 s Within clock uncertainties, signals are contemporaneous

  27. SN 1987A Event No.9 in Kamiokande-II Kamiokande-II detector 2140 tons of water fiducial volume for SN 1987A Hirata et al., PRD 38 (1988) 448

  28. 2002 Physics Nobel Prize for Neutrino Astronomy Ray Davis Jr. (1914 - 2006) Masatoshi Koshiba (*1926) “for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos”

  29. Neutrino-Driven Delayed Explosion Neutrino heating increases pressure behind shock front Picture adapted from Janka, astro-ph/0008432

  30. Standing Accretion Shock Instability (SASI) Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Mezzacappa et al., http://www.phy.ornl.gov/tsi/pages/simulations.html

  31. Large Detectors for Supernova Neutrinos LVD (400) Borexino (100) Baksan (100) Super-Kamiokande (104) KamLAND (400) MiniBooNE (200) In brackets events for a “fiducial SN” at distance 10 kpc IceCube (106)

  32. Simulated Supernova Signal at Super-Kamiokande Accretion Phase Kelvin-Helmholtz Cooling Phase Simulation for Super-Kamiokande SN signal at 10 kpc, based on a numerical Livermore model [Totani, Sato, Dalhed & Wilson, ApJ 496 (1998) 216]

  33. IceCube Neutrino Telescope at the South Pole • 1 km3 antarctic ice, instrumented • with 4800 photomultipliers • 22 of 80 strings installed (2007) • Completion until 2011 foreseen

  34. Global Cosmic Ray Spectrum

  35. Core of the Galaxy NGC 4261 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt

  36. IceCube as a Supernova Neutrino Detector Each optical module (OM) picks up Cherenkov light from its neighborhood. SN appears as “correlated noise”. • About 300 • Cherenkov • photons • per OM • from a SN • at 10 kpc • Noise • per OM • < 260 Hz • Total of • 4800 OMs • in IceCube IceCube SN signal at 10 kpc, based on a numerical Livermore model [Dighe, Keil & Raffelt, hep-ph/0303210] • Method first discussed by • Pryor, Roos & Webster, • ApJ 329:355 (1988) • Halzen, Jacobsen & Zas • astro-ph/9512080

  37. H- and L-Resonance for MSW Oscillations R. Tomàs, M. Kachelriess, G. Raffelt, A. Dighe, H.-T. Janka & L. Scheck: Neutrino signatures of supernova forward and reverse shock propagation[astro-ph/0407132] Resonance density for Resonance density for

  38. Shock-Wave Propagation in IceCube Inverted Hierarchy No shockwave Inverted Hierarchy Forward & reverse shock Inverted Hierarchy Forward shock Normal Hierarchy Choubey, Harries & Ross, “Probing neutrino oscillations from supernovae shock waves via the IceCube detector”, astro-ph/0604300

  39. Core-Collapse SN Rate in the Milky Way Core-collapse SNe per century 7 8 0 1 2 3 4 5 6 9 10 SN statistics in external galaxies van den Bergh & McClure (1994) Cappellaro & Turatto (2000) Gamma rays from 26Al (Milky Way) Diehl et al. (2006) Historical galactic SNe (all types) Strom (1994) Tammann et al. (1994) No galactic neutrino burst 90 % CL (25 y obserservation) Alekseev et al. (1993) References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & Turatto, astro-ph/0012455. Diehl et al., Nature 439 (2006) 45. Strom, Astron. Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekeseev et al., JETP 77 (1993) 339 and my update.

  40. SuperNova Early Warning System (SNEWS) Neutrino observation can alert astronomers several hours in advance to a supernova. To avoid false alarms, require alarm from at least two experiments. Super-K IceCube Coincidence Server @ BNL Alert LVD Supernova 1987A Early Light Curve Others ? http://snews.bnl.gov astro-ph/0406214

  41. The Red Supergiant Betelgeuse (Alpha Orionis) First resolved image of a star other than Sun Distance (Hipparcos) 130 pc (425 lyr) • If Betelgeuse goes Supernova: • 6107 neutrino events in Super-Kamiokande • 2.4103 neutron events per day from Silicon-burning phase • (few days warning!), need neutron tagging • [Odrzywolek, Misiaszek & Kutschera, astro-ph/0311012]

  42. LAGUNA - Funded FP7 Design Study Large Apparati for Grand Unification and Neutrino Astrophysics (see also arXiv:0705.0116)

  43. Title Dark Energy 73% (Cosmological Constant) Neutrinos 0.1-2% Normal Matter 4% (of this about 10% luminous) Dark Matter 23% Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt

  44. “Weighing” Neutrinos with KATRIN • Sensitive to common mass scale m • for all flavors because of small mass • differences from oscillations • Best limit from Mainz und Troitsk • m < 2.2 eV (95% CL) • KATRIN can reach 0.2 eV • Under construction • Data taking foreseen to begin in 2009 http://www-ik.fzk.de/katrin/

  45. “KATRIN Approaching” (25 Nov 2006)

  46. Cosmological Limit on Neutrino Masses Cosmic neutrino “sea”~ 112 cm-3neutrinos + anti-neutrinos per flavor mn < 40 eV For all stable flavors A classic paper: Gershtein & Zeldovich JETP Lett. 4 (1966) 120

  47. Strukturbildung im Universum Smooth Structured Structure forms by gravitational instability of primordial density fluctuations A fraction of hot dark matter suppresses small-scale structure

  48. Structure Formation with Hot Dark Matter Standard LCDM Model Neutrinos with Smn = 6.9 eV Structure fromation simulated with Gadget code Cube size 256 Mpc at zero redshift Troels Haugbølle, http://whome.phys.au.dk/~haugboel

  49. Power Spectrum of Cosmic Density Fluctuations

  50. Some Recent Cosmological Limits on Neutrino Masses Smn/eV (limit 95%CL) Data / Priors Hannestad 2003 [astro-ph/0303076] 1.01 WMAP-1, CMB, 2dF, HST Spergel et al. (WMAP) 2003 [astro-ph/0302209] 0.69 WMAP-1, 2dF, HST, s8 Crotty et al. 2004 [hep-ph/0402049] 1.0 0.6 WMAP-1, CMB, 2dF, SDSS & HST, SN Hannestad 2004 [hep-ph/0409108] 0.65 WMAP-1, SDSS, SN Ia gold sample, Ly-a data from Keck sample Seljak et al. 2004 [astro-ph/0407372] 0.42 WMAP-1, SDSS, Bias, Ly-a data from SDSS sample Hannestad et al. 2006 [hep-ph/0409108] 0.30 WMAP-1, CMB-small, SDSS, 2dF, SN Ia, BAO (SDSS), Ly-a (SDSS) Spergel et al. 2006 [hep-ph/0409108] 0.68 WMAP-3, SDSS, 2dF, SN Ia, s8 Seljak et al. 2006 [astro-ph/0604335] 0.14 WMAP-3, CMB-small, SDSS, 2dF, SN Ia, BAO (SDSS), Ly-a (SDSS)

More Related