Download
martin rinard laboratory for computer science massachusetts institute of technology n.
Skip this Video
Loading SlideShow in 5 Seconds..
Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology PowerPoint Presentation
Download Presentation
Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology

Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology

100 Views Download Presentation
Download Presentation

Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. MIT 6.035Top-Down Parsing Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology

  2. Orientation • Language specification • Lexical structure – regular expressions • Syntactic structure – grammar • This Lecture - recursive descent parsers • Code parser as set of mutually recursive procedures • Structure of program matches structure of grammar

  3. Starting Point • Assume lexical analysis has produced a sequence of tokens • Each token has a type and value • Types correspond to terminals • Values to contents of token read in • Examples • Int 549 – integer token with value 549 read in • if - if keyword, no need for a value • AddOp + - add operator, value +

  4. Basic Approach • Start with Start symbol • Build a leftmost derivation • If leftmost symbol is nonterminal, choose a production and apply it • If leftmost symbol is terminal, match against input • If all terminals match, have found a parse! • Key: find correct productions for nonterminals

  5. Graphical Illustration of Leftmost Derivation Sentential Form NT1 T1 T2 T3 NT2 NT3 Apply Production Here Not Here

  6. Grammar for Parsing Example StartExpr ExprExpr+Term ExprExpr-Term ExprTerm TermTerm* Int TermTerm/ Int Term Int • Set of tokens is { +, -, *, /, Int }, where Int = [0-9][0-9]* • For convenience, may represent each Int n token by n

  7. Parsing Example Parse Tree Remaining Input Start 2-2*2 Sentential Form Start Current Position in Parse Tree

  8. Parsing Example Parse Tree Remaining Input Start 2-2*2 Expr Sentential Form Expr Applied Production StartExpr Current Position in Parse Tree

  9. Parsing Example Parse Tree Remaining Input Start 2-2*2 Expr Sentential Form Expr - Term Expr - Term Applied Production ExprExpr-Term

  10. Parsing Example Parse Tree Remaining Input Start 2-2*2 Expr Sentential Form Expr - Term Term - Term Term Applied Production ExprTerm

  11. Parsing Example Parse Tree Remaining Input Start 2-2*2 Expr Sentential Form Expr - Term Int - Term Term Applied Production Int Term Int

  12. Parsing Example Parse Tree Remaining Input Match Input Token! Start 2-2*2 Expr Sentential Form Expr - Term 2 - Term Term Int 2

  13. Parsing Example Parse Tree Remaining Input Match Input Token! Start -2*2 Expr Sentential Form Expr - Term 2 - Term Term Int 2

  14. Parsing Example Parse Tree Remaining Input Match Input Token! Start 2*2 Expr Sentential Form Expr - Term 2 - Term Term Int 2

  15. Parsing Example Parse Tree Remaining Input Start 2*2 Expr Sentential Form Expr - Term 2 - Term*Int Term Term * Int Applied Production Int 2 TermTerm* Int

  16. Parsing Example Parse Tree Remaining Input Start 2*2 Expr Sentential Form Expr - Term 2 - Int * Int Term Term * Int Applied Production Int 2 Term Int Int

  17. Parsing Example Parse Tree Remaining Input Match Input Token! Start 2*2 Expr Sentential Form Expr - Term 2 - 2* Int Term Term * Int Int 2 Int 2

  18. Parsing Example Parse Tree Remaining Input Match Input Token! Start *2 Expr Sentential Form Expr - Term 2 - 2* Int Term Term * Int Int 2 Int 2

  19. Parsing Example Parse Tree Remaining Input Match Input Token! Start 2 Expr Sentential Form Expr - Term 2 - 2* Int Term Term * Int Int 2 Int 2

  20. Parsing Example Parse Tree Remaining Input Parse Complete! Start 2 Expr Sentential Form Expr - Term 2 - 2*2 Term Term * Int 2 Int 2 Int 2

  21. Summary • Three Actions (Mechanisms) • Apply production to expand current nonterminal in parse tree • Match current terminal (consuming input) • Accept the parse as correct • Parser generates preorder traversal of parse tree • visit parents before children • visit siblings from left to right

  22. Policy Problem • Which production to use for each nonterminal? • Classical Separation of Policy and Mechanism • One Approach: Backtracking • Treat it as a search problem • At each choice point, try next alternative • If it is clear that current try fails, go back to previous choice and try something different • General technique for searching • Used a lot in classical AI and natural language processing (parsing, speech recognition)

  23. Backtracking Example Parse Tree Remaining Input Start 2-2*2 Sentential Form Start

  24. Backtracking Example Parse Tree Remaining Input Start 2-2*2 Expr Sentential Form Expr Applied Production StartExpr

  25. Backtracking Example Parse Tree Remaining Input Start 2-2*2 Expr Sentential Form Expr + Term Expr + Term Applied Production ExprExpr+Term

  26. Backtracking Example Parse Tree Remaining Input Start 2-2*2 Expr Sentential Form Expr + Term Term + Term Term Applied Production ExprTerm

  27. Backtracking Example Parse Tree Remaining Input Match Input Token! Start 2-2*2 Expr Sentential Form Expr + Term Int + Term Term Applied Production Int Term Int

  28. Backtracking Example Parse Tree Remaining Input Can’t Match Input Token! Start -2*2 Expr Sentential Form Expr + Term 2 - Term Term Applied Production Int 2 Term Int

  29. Backtracking Example Parse Tree Remaining Input So Backtrack! Start 2-2*2 Expr Sentential Form Expr Applied Production StartExpr

  30. Backtracking Example Parse Tree Remaining Input Start 2-2*2 Expr Sentential Form Expr - Term Expr - Term Applied Production ExprExpr-Term

  31. Backtracking Example Parse Tree Remaining Input Start 2-2*2 Expr Sentential Form Expr - Term Term - Term Term Applied Production ExprTerm

  32. Backtracking Example Parse Tree Remaining Input Start 2-2*2 Expr Sentential Form Expr - Term Int - Term Term Applied Production Int Term Int

  33. Backtracking Example Parse Tree Remaining Input Match Input Token! Start -2*2 Expr Sentential Form Expr - Term 2 - Term Term Int 2

  34. Backtracking Example Parse Tree Remaining Input Match Input Token! Start 2*2 Expr Sentential Form Expr - Term 2 - Term Term Int 2

  35. Left Recursion + Top-Down Parsing = Infinite Loop • Example Production: TermTerm*Num • Potential parsing steps: Term Term Term Num Term Num Term * * Term Num *

  36. General Search Issues • Three components • Search space (parse trees) • Search algorithm (parsing algorithm) • Goal to find (parse tree for input program) • Would like to (but can’t always) ensure that • Find goal (hopefully quickly) if it exists • Search terminates if it does not • Handled in various ways in various contexts • Finite search space makes it easy • Exploration strategies for infinite search space • Sometimes one goal more important (model checking) • For parsing, hack grammar to remove left recursion

  37. Eliminating Left Recursion • Start with productions of form • A A  • A   • ,  sequences of terminals and nonterminals that do not start with A • Repeated application of A A  builds parse tree like this: A  A A   

  38. Eliminating Left Recursion • Replacement productions • A A  A  R R is a new nonterminal • A   R  R • R   New Parse Tree A Old Parse Tree A R  R  A  R    

  39. Hacked Grammar Original Grammar Fragment TermTerm* Int TermTerm/ Int Term Int New Grammar Fragment Term Int Term’ Term’* Int Term’ Term’/ Int Term’ Term’ 

  40. Parse Tree Comparisons Original Grammar New Grammar Term Term Int Term’ Int Term * Term’ * Int Int * Int Term’ * Int 

  41. Eliminating Left Recursion • Changes search space exploration algorithm • Eliminates direct infinite recursion • But grammar less intuitive • Sets things up for predictive parsing

  42. Predictive Parsing • Alternative to backtracking • Useful for programming languages, which can be designed to make parsing easier • Basic idea • Look ahead in input stream • Decide which production to apply based on next tokens in input stream • We will use one token of lookahead

  43. Predictive Parsing Example Grammar StartExpr ExprTermExpr’ Expr’  + Expr’ Expr’  - Expr’ Expr’  Term Int Term’ Term’* Int Term’ Term’/ Int Term’ Term’ 

  44. Choice Points • Assume Term’ is current position in parse tree • Have three possible productions to apply Term’* Int Term’ Term’/ Int Term’ Term’  • Use next token to decide • If next token is *, apply Term’* Int Term’ • If next token is /, apply Term’/ Int Term’ • Otherwise, apply Term’ 

  45. Predictive Parsing + Hand Coding = Recursive Descent Parser • One procedure per nonterminal NT • Productions NT 1 , …,NT n • Procedure examines the current input symbol T to determine which production to apply • If TFirst(k) • Apply production k • Consume terminals in k (check for correct terminal) • Recursively call procedures for nonterminals in k • Current input symbol stored in global variable token • Procedures return • true if parse succeeds • false if parse fails

  46. Example Boolean Term() if (token = Int n) token = NextToken(); return(TermPrime()) else return(false) Boolean TermPrime() if (token = *) token = NextToken(); if (token = Int n) token = NextToken(); return(TermPrime()) else return(false) else if (token = /) token = NextToken(); if (token = Int n) token = NextToken(); return(TermPrime()) else return(false) else return(true) Term Int Term’ Term’* Int Term’ Term’/ Int Term’ Term’ 

  47. Multiple Productions With Same Prefix in RHS • Example Grammar NT if then NT if then else • Assume NT is current position in parse tree, and if is the next token • Unclear which production to apply • Multiple k such that TFirst(k) • if  First(if then) • if  First(if then else)

  48. Solution: Left Factor the Grammar • New Grammar Factors Common Prefix Into Single Production NT if then NT’ NT’ else NT’ • No choice when next token is if! • All choices have been unified in one production.

  49. Nonterminals • What about productions with nonterminals? NTNT11 NTNT2  2 • Must choose based on possible first terminals that NT1 and NT2 can generate • What if NT1 or NT2 can generate ? • Must choose based on 1 and 2

  50. NT derives  • Two rules • NT implies NT derives  • NTNT1 ... NTnandfor all 1i n NTi derives  implies NT derives 