1 / 41

Normal Forms

Western Michigan University CS6800 Advanced Theory of Computation Spring 2014 By Abduljaleel Alhasnawi & Rihab Almalki. Normal Forms. Grammar: G = (V,  , R, S).  = { a, b }. Terminals . Terminals and Non terminals. V = {A , B, C , a ,b, c}. S. Start Symbol. R = S → A.

dyami
Télécharger la présentation

Normal Forms

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Western Michigan University CS6800 Advanced Theory of Computation Spring 2014 By AbduljaleelAlhasnawi & RihabAlmalki Normal Forms

  2. Grammar: G = (V, , R, S) • = { a, b } Terminals Terminals and Nonterminals V = {A, B, C , a ,b, c} S Start Symbol R = S → A Rules Introduction

  3. Rules: X Y , where: • X V- • Ex: S  aS • Y: , a, A, aB • G1: R= S aS |  ......? • G2: R= S aSa | bSb |  ....? • G3: R= S  SS | (S) |  ......? Regular Grammar

  4. Rules: X Y , where: • X V-  and |X| = 1 • Ex: S aS • YV* • Ex:S  S aSb • A  a AbBBa • A  B S  SS • A aBS ABCD Context Free Grammar (CFG)

  5. A grammar G is ambiguous iff there is at least one string in L(G) for which G produces more than one parse tree. • Ex: • Bal = { w {),(}*: the parentheses are balanced} • G = {{S,),(}, {),(}, R, S} , where: • R = S SS | (S) |  Ambiguity

  6. For a string (())() , we have more than one parse trees Ambiguity

  7. Chomsky Normal Form (CNF) • Def.: A context-free grammar G = (V, Σ, R, S) is said to be in Chomsky Normal Form (CNF), iff every rule in R is of one of the following forms: • X  a where a   , or • X  BC where B and C  V- • Greibach Normal Form (GNF) • Def.:GNF is a context free grammar G = (V, , R, S), where all rules have one of the following forms: • X  awhere a   and  (V-)* Normal Forms

  8. There exists 5-steps algorithm to convert a CFG G into a new grammar Gc such that: L(G) = L(Gc) – {} • convertChomsky(G:CFG) = • 1- G' = removeEps(G:CFG) S  • 2- G'' = removeUnits(G':CFG) A  B • 3- G'''= removeMixed(G'':CFG) A aB • 4- G'v= removeLong(G''' :CFG) S  ABCD • 5- G'v : L(G) = L(G'v) – {} Gv= atmostoneEps(G'v:CFG) S* S, S   Converting to Chomsky Normal Form

  9. Find the set N of nullable variables in G. • X is nullable iff either X  or • (X  A , A ) : X • Ex1: G: S  aACa • A  B | a • B  C | c • C  cC |  • Now,since C , C is nullable • since B  C , B is nullable • since A  B , A is nullable • ThereforeN = { A,B,C} Remove Epsilon

  10. According to N, the rules will be: • S  aACa • A  B | a |  • B  C | c |  • C  cC |  • Now,removeEps returns G': • S  aACa | aAa | aCa | aa • A  B | a • B  C | c • C  cC | c Remove Epsilon

  11. Def.: unit production is a rule whose right hand side consists of a single nonterminal symbol. Ex: A  B • Remove any unit production from G'. • Consider the remain rules • Ex1(continue), G‘: • S  aACa | aAa | aCa | aa • A  B | a • B  C | c • C  cC | c Remove Unit Productions

  12. Now by apply removeUnits(G':CFG) : • Remove A B But B  C | c, so Add A  C | c • Remove B CAdd B cC(B  c, already there) • Remove A CAdd A cC(A c, already there) • SoremoveUnits returns G'': • SaACa | aAa | aCa | aa • A a | c | cC • B c | cC • CcC | c Remove Unit Productions

  13. Def.: mixed is a rule whose right hand side consists of combination of terminals or terminals with nonterminal symbol. • Create a new nonterminal Ta for each terminal a   • For each Ta , add the rule Ta  a • Ex1(continue), G'': • SaACa | aAa | aCa | aa • A a | c | cC • B c | cC • CcC | c Remove Mixed

  14. Now, by apply removeMixed(G'':CFG), G''': • STaACTa | TaATa | TaCTa | TaTa • A a | c | TcC • B c | TcC • CTcC | c • Ta a • Tc c Remove Unit Productions

  15. Def.: long is a rule whose right hand side consists of more than two nonterminal symbol. • R: A  BCDE • By remove long, it will be: • A BM2 • M2 CM3 • M3 DE • Ex1(continue), G'': • SaACa | aAa | aCa | aa • A a | c | cC • B c | cC • CcC | c Remove Long

  16. Ex1(continue), G''' : • STaACTa | TaATa | TaCTa | TaTa • A a | c | TcC • B c | TcC • CTcC | c • Ta a • Tc c Remove Long

  17. Now, by apply removeLong(G''' :CFG), G'v: • S TaS1 |TaS3 |TaS4 |TaTa • S1AS2 S2CTaS3ATa S4CTa • A  a | c | TcC • B  c | TcC • C TcC | c • Ta a • Tc c Remove Long

  18. Finally,atmostoneEps(G'v:CFG)does not apply in Ex1,Gv= G'vsince L does not contain  (Sisnotnullable). • S TaS1 |TaS3 |TaS4 |TaTa • S1AS2 S2CTaS3ATa S4CTa • A  a | c | TcC • B  c | TcC • C TcC | c • Ta a • Tc c Add Epsilon

  19. Convert the following CFG to CNF: • SABC • AaC | D • BbB |  | A • CAc |  | Cc • Daa Example2

  20. N = {A,B,C} So • add S  AB|BC|AC, A  a, B  b, C  c • delete B , C  • The result is: • S  ABC| AB|BC|AC • A aC | D|a • B bB | A|b • C  Ac | Cc| c • D aa 1-Remove epsilon

  21. S  ABC| AB|BC|AC • A aC | D |a (A  D, D aa) remove A  D add A aa • B bB | A|b (B  A, A aC|aa|a) remove B A add B aC|aa|a • C  Ac | Cc|c • D aa 2- Remove units

  22. SABC| AB|BC|AC • AaC | aa |a • BbB | aC|aa|a|b • CAc | Cc|c • Daa 2- Remove units

  23. SABC| AB|BC|AC • ATaC | TaTa |a • BTbB | TaC| TaTa |a|b • CATc | CTc|c • DTaTa 3- Remove Mixed

  24. SAM2|M2| AC|AB • M2BC • ATaC | TaTa |a • BTbB | TaC| TaTa |a |b • CATc | CTc|c • DTaTa • Ta a • Tb b • Tc c 4- Remove Long

  25. S  AM2|M2| AC|AB • M2 BC • A TaC | TaTa |a • B TbB | TaC| TaTa |a |b • C ATc | CTc|c • D TaTa • Ta a • Tb b • Tc c 5- Add Epsilon: N/A

  26. Convert the following CFG to CNF: • A → BAB | B | ε • B → 00 | ε • 1- remove epsilon: • A → BAB | B | BB | AB | BA • B → 00 • 2- remove units: • A → BAB | 00 | BB | AB | BA • B → 00 Example3

  27. 3- remove mixed • A → BC | T0T0 | BB | AB | BA • C → AB, B → T0T0, T0 → 0 • 4- Add epsilon • A → BC | T0T0 | BB | AB | BA |  • C → AB • B → T0T0 • T0→ 0

  28. Which one is Chomsky Normal Form ? Why? Example4

  29. Not Chomsky Normal Form Chomsky Normal Form

  30. Convert the following CFG to CNF: Example5

  31. Introduce new variables for the terminals:

  32. Introduce new intermediate variable to break first production:

  33. Introduce intermediate variable:

  34. Final grammar in Chomsky Normal Form: Initial grammar

  35. Convert the following CFG to CNF: • E  E + T • E T • T  T  F • T  F • F  (E) • F id Example6

  36. Remove E  T , add E  T  F |F • Remove E  F , add E  (E) | id • Remove T  F , add T  (E) | id • The result: • E  E + T | T  F | (E) | id • T  T  F | (E) | id • F  (E) | id 1- Remove units

  37. E  E T+ T | T T F | T(E T)| id • T  T T F | T(E T)| id • F  T(E T)| id • T( ( • T) ) • T+ + • T* * 2- Remove Mixed

  38. E  E M2 | T M3 | T( M4 | id • T  T M3 | T(M4 | id • F  T( M4 | id • M2 T+ T • M3 T* F • M4  E T) • T( ( • T) ) • T+ + • T* * 3- Remove Long

  39. E  E M2 | T M3 | T( M4 | id • T  T M3 | T(M4 | id • F  T( M4 | id • M2 T+ T • M3 T* F • M4  E T) • T( ( • T) ) • T+ + • T* * 5- Add Epsilon: N/A

  40. Elaine A. Rich (2008)Automata, Computability, and Complexity: Theory and Applications, Pearson Prentice Hall. • https://cs.wmich.edu/~elise/courses/cs680/presentations.htm References

More Related