1 / 24

Giant Magnetoresistance

Giant Magnetoresistance. Kómár Péter Solid state physics seminar 25/09/ 2008. Types of magnetoresistance. O rdinary M agneto R esistance A nisotropic MR G iant MR T unneling MR C olossal MR B allistic MR E xtraordinary MR. First achievements. 1856 Thomson (Lord Kelvin) (AMR)

eara
Télécharger la présentation

Giant Magnetoresistance

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Giant Magnetoresistance Kómár PéterSolid state physics seminar25/09/2008

  2. Types of magnetoresistance • Ordinary MagnetoResistance • Anisotropic MR • Giant MR • Tunneling MR • Colossal MR • Ballistic MR • Extraordinary MR

  3. First achievements • 1856 Thomson (Lord Kelvin)(AMR) • B ║I→ Increase of resistance • B ┴ I→ Decrease of resistance (max. 5%) • 1886 Boltzmann, 1911 Corbino • Corbino-disk(OMR)

  4. Ordinary MR • Lorentz force → change of mobility: • Lorentz force:  velocity of charged particles: • Corbino-disk: • Effective mobility:

  5. I Iρ I’ B  0 B = 0 Corbino-disk

  6. B I Anisotropic MR • Angle betweenIandB • R = max. at parallel alignment • B ┴I→ OMR • Application: magnetic sensors • electronic compass • traffic sensors • non-galvanic current meter

  7. AMR and Hall-effect • Ohm’s law: j = σE ,where σ is a matrix • Diagonal elements: conductivity + AMR • Off-diag. elements: Hall-effect (j┴B┴EH)

  8. Barber’s pole magnetic sensor • Barber’s pole: • The sensor: • permalloy base (Fe20Ni80) • Au-Al strips  current flows in 45° → R(B) linear near 0 (2a) (2b) (2 a,b)Dr. Andreas P. Friedrich, Helmuth Lemme, "The Universal Current Sensor”, Sensors weekly (May 1, 2000)

  9. Giant MR • 1988 Fert & Grünberg(2007 Nobel prize) • Multilayered samples (Fe-Cr-Fe) • Ferromagnetic. – Antiferromagn. coupling • Decrease in resistance of 10% and 50% Albert Fert Peter Grünberg Photos: U. Montan (http://nobelprize.org/nobel_prizes/physics/laureates/2007/)

  10. Manufacturing multilayered samples • 1970s epitaxial growth technology: • laser evaporation • molecular beam • sputtering • chemical deposition • Features: • Si, SiO2, semiconductorbase • compatible lattice parameters(!) • good reproductivity

  11. 1 EA HA 12 12 [nm] EA: Results of Grünberg et al. I. • Fe-Cr-Fe sample: • GaAs base (epitxial growth, bcc) • AF coupling between Fe-s • [100] easy-(EA), [110]hardaxis(HA) • Checking: • MOKE (Magneto-opticalKerr effect) • light scattering on spin-waves G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn (1989) „Enhanced magnetoresistance is layered magnetic structures with antiferromagnetic interlayer exchange” Pys. Rev. B Vol 39. No. 7

  12. EA: HA: Results of Grünberg et al. II. • Change of resistance(T = TRT) • B║EA: GMR (-1.5%) • B║HA: AMR (-0.13%*) és GMR (-1.5%) • d(Fe) = 8 nm → ΔR/R = 3% * 25 nm Fe plate G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn (1989) „Enhanced magnetoresistance is layered magnetic structures with antiferromagnetic interlayer exchange” Pys. Rev. B Vol 39. No. 7

  13. Results of Fert et al. I. • [Fe-Cr]n sample: • GaAs base • 5 – 60 layers • changing d(Cr) (6, 3, 1.8, 1.2, 0.9 nm) → change in coupling of Fe layers: Ferromagnetic (6 nm) Antiferromagnetic (0.9 nm) (T = 4.2 K) M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff (1988) „Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattice” Pys. Rev. Letters Vol. 61, No. 21

  14. EA 30 (1.8nm) HA 35 (1.2nm) EA 60 (0.9nm) Results of Fert et al. II. • Change of resistance(T = 4.2 K) • ΔR/R (-50%) andHS (2 T) was measured • influence of temperature (TRT : -25%, 1.4 T) • EA-HA difference, number of layers, d(Cr) M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff (1988) „Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattice” Pys. Rev. Letters Vol. 61, No. 21

  15. Theory of GMR I. • RKKY interaction( Ruderman, Kittel (1954), Kasuya (1956), Yosida (1957) ) • Coupling between atomic and conducting electrons (exchangeint.,2nd order perturb.) • Based on the Bloch wavefunction  applies only for periodic structures • F-NF-F arrangement:coupling oscillates! Class for physics of the Royal Swedish Academy, “Discovery of the Giant Magnetoresistance” (9 October 2007)

  16. N↓(EF)=N↑(EF) N↓(EF)>N↑(EF) B R↓=R↑ R- =R↓<R↑= R+ Theory of GMR II. • Spin-dependentresistance • scattering in FM, and at FM/NM interlayer • R-1~σ ~ N(EF) • Fermi-surface changes as an effect ofB Class for physics of the Royal Swedish Academy, “Discovery of the Giant Magnetoresistance” (9 October 2007)

  17. B Theory of GMR III. • Spin-valve • d(NM) < λe → the spin of e--sis constant • ↓ and ↑ parallel conduction channels Class for physics of the Royal Swedish Academy, “Discovery of the Giant Magnetoresistance” (9 October 2007)

  18. Theory of GMR IV. • Half metals • ↓ - conducting, ↑ - insulator (eg. CrO2) • spin polarization: 100% Class for physics of the Royal Swedish Academy, “Discovery of the Giant Magnetoresistance” (9 October 2007)

  19. Application– HDD read heads • Construction • layers withdifferingcoercivity • + AFM layer (Bruce Gurney) • Rmeasuring • Efficiency • 1991. MR • 1997. GMR(Stuart Parkin) Magnet Academy, (http://www.magnet.fsu.edu/education/tutorials/magnetacademy/gmr/),IBM Research, (http://www.research.ibm.com/research/gmr.html)

  20. Tunneling MR • Ferromagn. – insulator– ferromagn. • 1975: 14%/ - • 1982: - / few% • 1995: 30% / 18% • 2007: >200% • Application: • spintronics • magnetic sensors Class for physics of the Royal Swedish Academy, “Discovery of the Giant Magnetoresistance” (9 October 2007)

  21. Colossal MR • 1993 von Helmolt et al. • perovskite-like La-Ba-Mn-O • annealing, T = 300 K , B = 7 T • |ΔR|/R > 60% (steep start, no saturation) R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer (1993) „Giant Negative Magnetoresistance in Perovskitelike La2/3Ba1/3MnOx Ferromagnetic Films”, Pys. Rev. Letters Vol. 71, No. 14

  22. Spintronics I. • Manipulating both charge and spin • Spin sources: GMR, TMR (Current In Plane, CPerpendicular P) • Manipulation: Spin Torqe Transfer (spin of current → magnetization of layer) • Reading (in semiconductors):light scattering, electroluminescence, spin valve, ballistic spin filtering

  23. Spintronics II. • Application: • MRAM (NVM) • transistor • laser

  24. Thank you for the attention!

More Related