1 / 21

EX 1: Pb-Sn Eutectic System

EX 1: Pb-Sn Eutectic System. T (ºC). 300. L (liquid). a. L. +. a. b. b. L. +. 200. 183ºC. 18.3. 61.9. 97.8. C  - C 0. 150. S. R. S. =. W. =. . R + S. C  - C . 100. a. +. b. 99 - 40. 59. =. =. = 0.67. 99 - 11. 88. 100. 0. 11. 20. 60. 80. 99.

eduvall
Télécharger la présentation

EX 1: Pb-Sn Eutectic System

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EX 1: Pb-Sn Eutectic System T(ºC) 300 L (liquid) a L + a b b L + 200 183ºC 18.3 61.9 97.8 C- C0 150 S R S = W =  R+S C- C 100 a + b 99 - 40 59 = = = 0.67 99 - 11 88 100 0 11 20 60 80 99 40 C0- C R W C C C0 = =  C, wt% Sn C - C R+S 40 - 11 29 = = 0.33 = 99 - 11 88 • For a 40 wt% Sn-60 wt% Pb alloy at 150ºC, determine: -- the phases present Pb-Sn system Answer: a + b -- the phase compositions Answer: Ca = 11 wt% Sn Cb = 99 wt% Sn -- the relative amount of each phase Answer: Adapted from Fig. 9.8, Callister & Rethwisch 8e.

  2. EX 2: Pb-Sn Eutectic System T(ºC) CL - C0 46 - 40 = W = a CL - C 46 - 17 300 L (liquid) 6 a L + = = 0.21 29 220 a b b R L + S 200 183ºC 100 a + b 100 17 46 0 20 40 60 80 C CL C0 C, wt% Sn C0 - C 23 = WL = = 0.79 CL - C 29 • For a 40 wt% Sn-60 wt% Pb alloy at 220ºC, determine: -- the phases present: Pb-Sn system Answer: a + L -- the phase compositions Answer: Ca = 17 wt% Sn CL = 46 wt% Sn -- the relative amount of each phase Answer: Adapted from Fig. 9.8, Callister & Rethwisch 8e.

  3. Microstructural Developments in Eutectic Systems I T(ºC) L: C0wt% Sn 400 L a L 300 L a + a 200 (Pb-Sn a: C0wt% Sn TE System) 100 b + a 0 10 20 30 C , wt% Sn C0 2 (room T solubility limit) • For alloys for which C0 < 2 wt% Sn (compositions ranging between pure component and the max sol at room temp) • Result: at room temperature -- polycrystalline with grains of a phase having composition C0 Adapted from Fig. 9.11, Callister & Rethwisch 8e.

  4. Microstructural Developments in Eutectic Systems II L: C0 wt% Sn T(ºC) 400 L L 300 a L + a a: C0wt% Sn a 200 TE a b 100 b + a Pb-Sn system 0 10 20 30 C , wt% Sn C0 2 (sol. limit at T ) 18.3 room (sol. limit at TE) • For alloys for which 2 wt% Sn < C0 < 18.3 wt% Sn Room tem solubility and max solid solubility at Te • Result: at temperatures in a + b range -- polycrystalline with agrains and small b-phase particles Adapted from Fig. 9.12, Callister & Rethwisch 8e.

  5. Microstructural Developments in Eutectic Systems III Micrograph of Pb-Sn T(ºC) eutectic L: C0 wt% Sn microstructure 300 L Pb-Sn system a L + a b L 200 183ºC TE 100 160m a : 97.8 wt% Sn Adapted from Fig. 9.14, Callister & Rethwisch 8e. : 18.3 wt%Sn 0 20 40 60 80 100 97.8 18.3 CE C, wt% Sn 61.9 • For alloy of composition C0 = CE • Result: Eutectic microstructure (lamellar structure) -- alternating layers (lamellae) of a and b phases. Adapted from Fig. 9.13, Callister & Rethwisch 8e.

  6. Hypoeutectic & Hypereutectic hypoeutectic: C0 = 50 wt% Sn hypereutectic: (illustration only) (Figs. 9.14 and 9.17 from Metals Handbook, 9th ed., Vol. 9, Metallography and Microstructures, American Society for Metals, Materials Park, OH, 1985.) a b a b a a b b a b a b 175 mm Adapted from Fig. 9.17, Callister & Rethwisch 8e. Adapted from Fig. 9.17, Callister & Rethwisch 8e. (Illustration only) 300 L T(ºC) Adapted from Fig. 9.8, Callister & Rethwisch 8e. (Fig. 10.8 adapted from Binary Phase Diagrams, 2nd ed., Vol. 3, T.B. Massalski (Editor-in-Chief), ASM International, Materials Park, OH, 1990.) a L + a b b L + (Pb-Sn 200 TE System) a + b 100 C, wt% Sn 0 20 40 60 80 100 eutectic 61.9 eutectic: C0=61.9wt% Sn 160 mm eutectic micro-constituent Adapted from Fig. 9.14, Callister & Rethwisch 8e.

  7. Intermetallic Compounds Adapted from Fig. 9.20, Callister & Rethwisch 8e. Mg2Pb Note: intermetallic compound exists as a line on the diagram - not an area - because of stoichiometry (i.e. composition of a compound is a fixed value). – 2- melting Tem. 3- solubility of each element in other

  8. cool cool cool heat heat heat • Eutectoid – one solid phase transforms to two other solid phases S2S1+S3  + Fe3C (For Fe-C, 727ºC, 0.76 wt% C) intermetallic compound - cementite • Peritectic - liquid and one solid phase transform to a second solid phase S1 + LS2  + L (For Fe-C, 1493ºC, 0.16 wt% C) Eutectic, Eutectoid, & Peritectic • Eutectic - liquid transforms to two solid phases L +  (For Pb-Sn, 183ºC, 61.9 wt% Sn)

  9. Iron Carbon Phase diagram

  10. Comments • 1- BCC, FCC, BCC • 2- % is max 6.70 then pure graphite • Fe3C cementite • Carbon max solubility in Ferrite and austenite and at what temp • fe3C exist where (ranges of Tem)? And it is hard and brittle and not equilibrium • Eutictoid a = pearlite • Proeutictoid a + eutectoid a • a (proeutictiod + eutectoid)

  11. T(ºC) 1600 d - Eutectic (A): L 1400 Þ g + L Fe3C g +L g A 1200 1148ºC - Eutectoid (B): (austenite) g Þ a + Fe3C g g 1000 g +Fe3C g g a Fe3C (cementite) + 800 B g a 727ºC = T eutectoid 600 a +Fe3C 400 0 1 2 3 4 5 6 6.7 4.30 0.76 C, wt% C (Fe) 120 mm Result: Pearlite = Fe3C (cementite-hard) alternating layers of a (ferrite-soft) a and Fe3C phases (Adapted from Fig. 9.27, Callister & Rethwisch 8e.) Adapted from Fig. 9.24,Callister & Rethwisch 8e. Iron-Carbon (Fe-C) Phase Diagram • 2 important points L+Fe3C

  12. Ferrous alloys : based on C content 1- Iron < .008 wt% C : ferrite phase at room Tepm 2- Steel : .008 – 2.14 wt% C : Fe3C + a 3- Cast iron : 2.14 -6.70 wt%

  13. T(ºC) 1600 d L 1400 (Fe-C g +L g g g System) 1200 L+Fe3C 1148ºC (austenite) g g g 1000 g g +Fe3C g g Fe3C (cementite) a g g 800 727ºC a a a g g 600 a +Fe3C 400 0 1 2 3 4 5 6 6.7 a C, wt% C (Fe) C0 0.76 pearlite Hypoeutectoid 100 mm steel pearlite proeutectoid ferrite Adapted from Fig. 9.30, Callister & Rethwisch 8e. Hypoeutectoid Steel Adapted from Figs. 9.24 and 9.29,Callister & Rethwisch 8e. (Fig. 9.24 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.)

  14. T(ºC) 1600 d L 1400 (Fe-C g +L g System) 1200 L+Fe3C 1148ºC (austenite) 1000 g +Fe3C Wa’= S/(R+S) Wa= s/(r+s) Fe3C (cementite) a r s g g 800 Wg=(1 - Wa) W=(1 – Wa’) 727ºC a a a g g R S 600 a +Fe3C 400 0 1 2 3 4 5 6 6.7 a C, wt% C (Fe) C0 0.76 Wpearlite=Wg pearlite Hypoeutectoid 100 mm steel Fe3C pearlite proeutectoid ferrite Adapted from Fig. 9.30, Callister & Rethwisch 8e. Hypoeutectoid Steel Adapted from Figs. 9.24 and 9.29,Callister & Rethwisch 8e. (Fig. 9.24 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.)

  15. T(ºC) 1600 d L 1400 (Fe-C g +L g g g System) 1200 L+Fe3C 1148ºC g g (austenite) g 1000 g g +Fe3C g g Fe3C (cementite) Fe3C 800 g g a g g 600 a +Fe3C 400 0 1 2 3 4 5 6 6.7 C, wt%C (Fe) pearlite Hypereutectoid 60mm steel pearlite proeutectoid Fe3C Adapted from Fig. 9.33, Callister & Rethwisch 8e. Hypereutectoid Steel Adapted from Figs. 9.24 and 9.32,Callister & Rethwisch 8e. (Fig. 9.24 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.) C0 0.76

  16. T(ºC) 1600 d L 1400 (Fe-C g +L g Fe3C System) 1200 L+Fe3C 1148ºC (austenite) 1000 g +Fe3C Wg=x/(v + x) Fe3C (cementite) x v 800 g W=(1-Wg) g Fe3C a g g V X 600 a +Fe3C 400 0 1 2 3 4 5 6 6.7 C, wt%C (Fe) pearlite Wpearlite=Wg Wa= X/(V+X) Hypereutectoid 60mm W=(1 - Wa) steel Fe3C’ pearlite proeutectoid Fe3C Adapted from Fig. 9.33, Callister & Rethwisch 8e. Hypereutectoid Steel Adapted from Figs. 9.24 and 9.32,Callister & Rethwisch 8e. (Fig. 9.24 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.) C0 0.76

  17. Hypo and hyper – lever rule

  18. Example Problem For a 99.6 wt% Fe-0.40 wt% C steel at a temperature just below the eutectoid, determine the following: • The compositions of Fe3C and ferrite (). • The amount of cementite (in grams) that forms in 100 g of steel. • The amounts of pearlite and proeutectoid ferrite () in the 100 g.

  19. 1600 d L 1400 T(ºC) g +L g 1200 L+Fe3C 1148ºC (austenite) 1000 g +Fe3C Fe3C (cementite) 800 727ºC Amount of Fe3C in 100 g = (100 g)WFe3C = (100 g)(0.057) = 5.7 g R S 600 a +Fe3C 400 0 1 2 3 4 5 6 6.7 C0 C C, wt% C CFe C 3 Solution to Example Problem a) Using the RS tie line just below the eutectoid Ca = 0.022 wt% CCFe3C = 6.70 wt% C • Using the lever rule with the tie line shown

  20. 1600 d L 1400 T(ºC) g +L g 1200 L+Fe3C 1148ºC (austenite) 1000 g +Fe3C Fe3C (cementite) 800 727ºC V X Amount of pearlite in 100 g = (100 g)Wpearlite = (100 g)(0.512) = 51.2 g 600 a +Fe3C 400 C0 0 1 2 3 4 5 6 6.7 C C C, wt% C Solution to Example Problem (cont.) c) Using the VX tie line just above the eutectoid and realizing that C0 = 0.40 wt% CCa = 0.022 wt% CCpearlite = C = 0.76 wt% C

More Related