1 / 63

On-the-fly Synthesis of Multi-Clock SVA

On-the-fly Synthesis of Multi-Clock SVA. Jiang Long Andrew Seawright Paparao Kavalipati. IWLS’ 2008. Outline. Introduction Background and scope Related works Synthesizing multi-clock SVA Single clock assertion compilation Compile through rewriting On-the-fly synthesis algorithm

elata
Télécharger la présentation

On-the-fly Synthesis of Multi-Clock SVA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. On-the-fly Synthesis of Multi-Clock SVA Jiang Long Andrew Seawright Paparao Kavalipati IWLS’ 2008

  2. Outline • Introduction • Background and scope • Related works • Synthesizing multi-clock SVA • Single clock assertion compilation • Compile through rewriting • On-the-fly synthesis algorithm • Proof of correctness • Experimental results and conclusions

  3. Formal Model for Multi-Clock Designs SVA Assertions RTL Design Clock Specification

  4. Multi-Clock Modeling mclk

  5. Objective • Synthesize SVA into Checker logic • Generic checker logic • Utilize existing FV framework/technique/optimization • Utilize existing multi-clock network • Optimize checker logic size • Number of sequentials and gates • Validation • Proof of correctness

  6. SVA Abstract Grammar – Unclocked Sequence Sequences define language of words • Booleans b • Concatenation R1 ##1 R2 • Or R1 or R2 • Repetition R1 [*0:$] • Fusion R1 ##0 R2 • Intersect R1 intersect R2 • Local Variable b, v=e

  7. SVA Abstract Grammar – Clocked Sequence • Grammar for clocked sequence S S ::= @(clk) R | ( S ##1 S) • Single clock @clk R • Multi-clock @clk1 R1 ##1 @clk2 R2

  8. SVA Abstract Grammar - Property Properties evaluate true/false over words • Regular expression R • Implication R |-> P R |=> P • Or P1 or P2 • And P1 and P1 • Not not P

  9. SVA Abstract Grammar - Property Properties evaluate true/false over finite words • Implication R |-> P R |=> P

  10. SVA Multi-Clock Assertions

  11. SVA Multi-Clock Assertions

  12. SVA Multi-Clock Assertions

  13. SVA Multi-Clock Assertions

  14. SVA Multi-Clock Assertions

  15. Related Work • Synthesis of regular expression + “actions” • Seawright / Brewer - synthesis of controllers • Synthesis of SVA • Pellauer / Lis / Baltus / Nikhil - using Blue Spec • Checkers in Formal Verification • Beer / Ben-David / Landver: on-fly-model checking of RCTL • Synthesis of SVA Local Variables • Long/Seawright • Multi-Clock assertion synthesis for verification • Ganai, et al. • Annotating OVL 2.0 with SVA • Long, Seawright, et al.

  16. Contribution • Synthesize SVA into Checker logic • Adapt single-clock SVA compilation procedure • Generic checker logic • Utilize existing FV framework/technique/optimization • Utilize existing multi-clock network • Optimized checker logic size • Validation • Proof of correctness based on SVA semantics

  17. Outline • Introduction • Background and scope • Related works • Synthesizing Multi-clock SVA • Single clock assertion compilation • Compile through semantic rewriting • Penalty: Double the checker logic size • On-the-fly synthesis algorithm • No penalty • Proof of correctness • Experimental results and conclusions

  18. |=> Prop term ##1 R term [*2:M] Bool gnt term req0 req1 SVA compilation Property p_m1; @(posedge clk0) req0 ##1 req1[*2:M] |=> gnt; endproperty

  19. |=> term ##1 term [*2:M] gnt term req0 req1 Recursive Construction

  20. |=> term ##1 term [*2:M] gnt term req0 req1 Recursive Construction

  21. ##1 R1 R2 AP start start AP start AP R1 R2 clk R1 ##1 R2

  22. R1 ##0 R2 AP start start AP start AP R1 R2

  23. R1 ##0 R2 AP start start AP start AP R1 R2 R is equivalent to (R ##0 1) (1 ##0 R)

  24. Outline • Introduction • Background and scope • Related works • Synthesizing Multi-clock SVA • Single clock assertion compilation • Compile through semantic rewriting • Penalty: Double the checker logic size • On-the-fly synthesis algorithm • No penalty • Proof of correctness • Experimental results and conclusions

  25. SVA Semantic Rewriting Rules

  26. Rewriting: An Example

  27. |=> |=> ##1 ##1 term ##1 [*2:3] ##1 [*0:$] term [*2:3] ##1 [*0:$] term term gnt term term [*0:$] term clk2&&gnt !clk2 term !clk0 clk0&&req0 term req0 clk1&&req1 req1 !clk1 Synthesize Through Rewriting

  28. |=> |=> ##1 ##1 term ##1 [*2:3] ##1 [*0:$] term [*2:3] ##1 [*0:$] term term gnt term term [*0:$] term clk2&&gnt !clk2 term !clk0 clk0&&req0 term req0 clk1&&req1 req1 !clk1 Synthesiz3 Through Rewriting 1. Checker logic: Correct by Construction

  29. |=> |=> ##1 ##1 term ##1 [*2:3] ##1 [*0:$] term [*2:3] ##1 [*0:$] term term gnt term term [*0:$] term clk2&&gnt !clk2 term !clk0 clk0&&req0 term req0 clk1&&req1 req1 !clk1 Synthesis Through Rewriting 1. Checker logic: Correct by Construction 2. Rewriting rule (2.1): size of the tree doubled

  30. On-the-fly Synthesis • Motivation • Avoid the penalty from the rewriting • Model clock directly • Compilation procedure • Annotate syntax tree with clock information • Adapt to existing recursive compilation • Model clocked constructs directly • Proof of correctness through construction

  31. |=> Prop term ##1 R term [*2:M] Bool gnt term req0 req1 Annotated Abstract Syntax Tree clk2 clk3 clk3 clk3 clk2 clk1 clk1 clk1 clk2 clk2 clk2 clk2

  32. |=> Prop term ##1 R term [*2:M] Bool gnt term req0 req1 Annotated Abstract Syntax Tree clk2 clk3 clk3 clk3 clk2 clk1 clk1 clk1 clk2 clk2 clk2 clk2

  33. |=> Prop term ##1 R term [*2:M] Bool gnt term req0 req1 Annotated Abstract Syntax Tree clk2 clk3 clk3 clk3 clk2 clk1 clk1 clk1 clk2 clk2 clk2 clk2

  34. On-the-fly Model • Annotated node with a single clock • @clk (b) • @clk (R1 ##1 R2) • Annotated node with two different clocks • @clk1 R1 ##1 @clk2 R2

  35. Basic Block 1: @clk(b)

  36. Basic Block 2: @clk(R1 ##1 R2)

  37. Basic Block 2: @clk(R1 ##1 R2)

  38. Building Block 3: @clk1 R1 ##1 @clk2 R2

  39. Building Block 3: @clk1 R1 ##1 @clk2 R2

  40. Building Block 3: @clk1 R1 ##1 @clk2 R2 s0 <= ( R1.Ap && @clk1 ) || ( s0 && !@clk2 )

  41. NFA View: @clk1 R1 ##1 @clk2 R2

  42. Outline • Introduction • Background and scope • Related works • Synthesizing Multi-clock SVA • Single clock assertion compilation • Compile through semantic rewriting • Penalty: Double the checker logic size • On-the-fly synthesis algorithm • No penalty • Proof of correctness • Experimental results and conclusions

  43. SVA Rewriting Rules

  44. Proof of Correctness • Lemmas • R equals. R ##0 1 • R equals. 1 ##0 R

  45. Proof of Correctness • Lemmas • R equals. R ##0 1 • R equals. 1 ##0 R • @clk R equals. @clk ( R ##0 1 ) • @clk R equals. @clk ( 1 ##0 R)

  46. Proof of Correctness • Lemmas • R equals. R ##0 1 • R equals. 1 ##0 R • @clk R equals. @clk ( R ##0 1 ) • @clk R equals. @clk ( 1 ##0 R) • @clk R equals. @clk 1 ##0 @clk R • @clk R equals. @clk R ##0 @clk 1

  47. Proof of Correctness • Lemmas • R equals. R ##0 1 • R equals. 1 ##0 R • @clk R equals. @clk ( R ##0 1 ) • @clk R equals. @clk ( 1 ##0 R) • @clk R equals. @clk 1 ##0 @clk R • @clk R equals. @clk R ##0 @clk 1 • @clk1 R1 ##1 @clk2 R2

  48. Proof of Correctness • Lemmas • R equals. R ##0 1 • R equals. 1 ##0 R • @clk R equals. @clk ( R ##0 1 ) • @clk R equals. @clk ( 1 ##0 R) • @clk R equals. @clk 1 ##0 @clk R • @clk R equals. @clk R ##0 @clk 1 • @clk1 R1 ##1 @clk2 R2 • @clk1 (R1 ##0 1) ##1 @clk2 ( 1 ##0 R2 )

  49. Proof of Correctness • Lemmas • R equals. R ##0 1 • R equals. 1 ##0 R • @clk R equals. @clk ( R ##0 1 ) • @clk R equals. @clk ( 1 ##0 R) • @clk R equals. @clk 1 ##0 @clk R • @clk R equals. @clk R ##0 @clk 1 • @clk1 R1 ##1 @clk2 R2 • @clk1 (R1 ##0 1) ##1 @clk2 ( 1 ##0 R2 ) • @clk1 R1 ##0 @clk11 ##1 @clk21 ##0 @clk2 R2

  50. Proof • @clk1 R1 ##0 @clk11 ##1 @clk21 ##0 @clk2 R2

More Related