Download
processing of varian data n.
Skip this Video
Loading SlideShow in 5 Seconds..
Processing of Varian data PowerPoint Presentation
Download Presentation
Processing of Varian data

Processing of Varian data

154 Vues Download Presentation
Télécharger la présentation

Processing of Varian data

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Processing of Varian data MK, 960517

  2. Two points recorded per t1 value, with a 90o phase shift The data are complex-FFT’ed, phase corrected, and the imaginary component discarded 1D Phase Sensitive Experiment t1 One real number 0 1 2 3 4 5... { { { { { { The imaginary part - also a real

  3. Each 1D slice is processed as a normal 1D spectrum The PPFIX command during processing of the first dimension removes the imaginary components (n,n). A complex FFT is done in the second dimension (n,n). 2D Phase Sensitive Experiment t2 0 1 2 3 4 5.. { { { { { { { 0 t1 { 1 { 2 { 3..

  4. The PPFIX command during processing of the first dimension removes the imaginary components (n,n,n,o). A complex FFT is done in the second dimension (n,n),(n,n). The PPFIX in the 2nd dimension removes (n,n) A complex FFT is done in the third dimension (n,n) 3D Phase Sensitive Experiment - Bruker t1 t2 t3 0 1 2 3 4 5.. { { { { { { { 0 { { 0 1.. { 0 { 1.. { 0 { { 1.. 1.. { 0 { 1..

  5. { 0 { 0 { 1 { 1.. { 0 { 0 { 1 { 1.. 3D: Bruker vs Varian Bruker Varian t1 t2 t3 t1 t2 t3 0 1 2 3 4 5.. 0 1 2 3 4 5.. { { { { { { { { { { { { { 0 { { 0 { 0 1.. { { 0 0 { 0 { 1.. { 0 { { 1 { 1 1.. { { 1.. 0 { 1.. { 1..

  6. array=phase,phase2 t1 t2 t3 0 1 2 3 4 5.. { { { { { { { 0 { 0 { 0 { 1 { 0 { 1.. { 0 { 1 { 0 { 1 { 1.. { 1.. 3D: phase and phase2 array=phase2,phase t1 t2 t3 0 1 2 3 4 5.. { { { { { { { 0 { { 0 0 { 1 { { 0 1.. { 0 { { 1 0 { 1 { { 1.. 1..

  7. 3D: Sensitivity-enhanced spectra • In principle, two data sets are recorded. • They can be combined in two ways. The result is two sets of slices that differ by 90o degrees • The second slice is subjected to a 90o phase correction (equivalent to a Hilbert transformation) and added to the first slice • As the random noise in a spectrum and its Hilbert transform is statistically independent, adding the two slices above gives the well-known improvement by

  8. 0 1 2 3 4 5.. { { { { { { + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + 3D: grad_sort_nd array=phase2,phase t1 t2 t3 0 1 2 3 4 5.. { { { { { { { 0 { Add and subtract: { 0 0 Rearrange and rotate 90o: 0 1 2 3 4 5.. { { { { { { grad_sort_nd2 swaps 2nd and 3rd slice before processing

  9. Download the experiment to an SGI machine Look in the procpar file for the parameters: ni, ni2, and np np no. of real points in t3 ni no. complex points in t2 ni2 no. complex points in t1 Size of FID file should be: 32+ni*2*ni2*2*(np*4+28) ni2 7 1 32767 0 0 2 1 0 1 64 1 16 0 ...... ni 7 1 32767 0 0 2 1 0 1 64 1 64 0 ...... np 7 1 524288 64 64 2 1 11 1 64 1 1024 0 Processing in MNMR I

  10. Run grad_sort_nd, if necessary, on the SGI machine where you’ve moved the spectrum to. np: 1024 ni: 64 ni2: 16 cd <whatever> mv fid original_fid grad_sort_nd original_fid fid 64 16 0 1024 Processing in MNMR II

  11. Processing in the t3 dimension needs the parameters listed to the right: Use VARIAN 2 for phase2,phase and not sensitivity enhanced LOADTYPE 3 LOAD <name of FID file> ZERO np SINESIZE np/2 SETEXP ni*2 ni2*2 VARIAN 1 FREQUENCY 500.105 SWEEP 8000 PPFIX RR Processing in MNMR III

  12. Processing in the second dimension DIMENSION 1 FREQUENCY 500.105 SWEEP 6000 ZERO ni*2 SINESIZE ni PPM 0.0 4.648 PPFIX RR Processing in MNMR IV

  13. Processing in the third dimension - That’s it! DIMENSION 2 FREQUENCY 50.68 SWEEP 2000 ZERO ni2*2 PPM 0 114.83 NORMALIZE 70.0 1.0 NOBC SINESIZE ni2 Processing in MNMR V