1 / 75

DRAFT-Sat Preliminary Design Review

DRAFT-Sat Preliminary Design Review. 2003-2004 Senior Projects University of Colorado Aerospace Department. Objective. Provide a low budget system that can remove orbital perturbations from a satellite trajectory.

Télécharger la présentation

DRAFT-Sat Preliminary Design Review

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.


Presentation Transcript

  1. DRAFT-SatPreliminary Design Review 2003-2004 Senior Projects University of Colorado Aerospace Department

  2. Objective • Provide a low budget system that can remove orbital perturbations from a satellite trajectory. • System must compensate for perturbations in 3 axes causing the satellite to move 1cm or more from an orbital trajectory. • System must be self contained. • System must be testable both in microgravity aboard the KC-135 and in 1g of gravity on the surface of the Earth. • Applications in preventing orbit decay and improving satellite position knowledge.

  3. Background • 2002/2003 Drag Free Team • Tested a 2-D prototype. • Verified the prototype could hold the position of the system to within 1cm for 10 seconds on an air table. • CO2 propulsion system with a thrust of 0.7 N to control the prototype. • Data processing done on a PC in MATLAB. • Bang-Bang control law with derivative gain. • Powered by external source.

  4. STRUCTURE Chris Erickson

  5. Structural Design Structural Design Drivers: • High strength / weight • Minimize mass for air table testing. • Robust enough for handling • Safely below yield strength during handling and assembly. • Meet G-loading and drop requirements for KC-135 • -Meet KC-135 flight requirements of: • 9 g forward loading. • 3 g aft loading. • 6 g downward loading. • 2 g lateral loading. • 2 g upward loading. • Sustain 4ft drop in 0.75 g environment. • Ease of Machining

  6. Architecture Comparison -Compare architectures using structural design drivers. Due to unknowns with component weight, g-load and drop tests will not yield sufficient comparisons between structures at this point of the design. Instead, the structures will be compared by their robustness to crushing, a good measure of overall strength and handling robustness. -Use FEM models of structures for comparison. Load Models with 200 lb on their upper surfaces. Constrain vertical movement of lower surface.

  7. Comparison: Study is done using 6061-T6 Al Comments: Minimum FOS Weight Machining Complexity 0.063 0.88 lb Complex 0.58 0.91 lb Simple Octagonal Ring is nearly 10x stronger. (based on yield strength) Nearly identical weight. Octagonal Ring is much simpler to machine.

  8. Structural Materials Material Design Drivers: • High strength & stiffness to weight ratio. • Easy to machine. • Readily available. • Low cost. The options to choose from are: • Aluminum Alloy • Plastic • Steel • Titanium Alloy

  9. Structural Risks * *

  10. Octagonal Ring Assembly Conceptual Assembly of Proposed Design

  11. SENSING Ryan Olds

  12. Sensing Options

  13. Requirements 5V DC Power Supply. Draws 200mA. RS-232 or TTL serial communication with a microcontroller. Needs to be 2 inches from the object it is tracking. Tracked object must have a sharp contrast with surroundings (ex. Red on White). Specifications 4 - 17 frames per second. 2.25" wide x 1.75" high x 2" deep. Up to 160 x 288 Resolution. B/W Analog video output SX52 Processor (33% faster than previous system). Can operate between 1200 and 115200 baud. Wide angle lens can increase FOV to 55. CMUcam2 • Heritage • CMUcam1 used by 2002-2003 Drag Free team to successfully control a 2-D plate to within 1cm. • Much of the software is already written and tested.

  14. Proof Mass Needs to be visible to the camera. Contrasts with Background. Must be at least 5% of camera FOV. Must be capable of movement in 3 axes. Cannot be perturbed. Cavity Needs to be transparent so that the proof mass is visible. Must provide adequate light so the proof mass is visible. Must allow the proof mass to displace more than 1cm. Proof Mass / Cavity Requirements

  15. Proof Mass Bright Color (Red) to contrast with cavity. 1cm diameter (allows proof mass to be 10%-20% of camera FOV) Cavity 5cm sided cube. Allows proof mass to displace as much as 2cm. Clear plastic walls allow the camera to see the proof mass. LEDs Proof Mass / Cavity 2cm 5cm 2cm Transparent Walls 5cm Error Box

  16. z y x Camera Orientation for 3-D Color Tracking CMUcam2 resolution (160 x 288) 55 55 5cm 5cm 5cm Zres = 92 pix/cm 55 Zres = 4 pix/cm Yres =51 pix/cm Yres =51 pix/cm Xres = 92 pix/cm Xres = 92 pix/cm

  17. Design Issues and Risks


  19. Microcontroller Requirements • Data Rate • 128-544 Hz • Processor Speed • 1280-5440 Hz • Memory • 13600 bytes • Interface • RS-232 • TTL

  20. Control Flow Chart CMOS Image Array CMOS Image Array CMUcam2 (2) Buffer Buffer CMUcam2 Vision Board CMUcam2 Vision Board RS-232 or TTL RS-232 or TTL Microcontroller Microcontroller RAM PC RS-232 TTL TTL Solenoids (6)

  21. Microcontroller Options • Motorola • Expensive • Complicated • Atmel AVR Microcontroller • Inexpensive • Microchip PIC Microcontroller • Inexpensive • Firsthand knowledge

  22. Not enough RAM Will need umbilical to download data directly to PC  Not self contained Will still be able to function, but no verification Insufficient Processor Speed Slow reaction time Limited control Interface Unable to download data to PC RAM Umbilical Processor Lower data rate Interface Utilize RS232 and TTL connections Risks/Off Ramps

  23. PROPULSION Katie Dunn

  24. Propellant Piping Piping Piping Fluid Regulation Device Fluid Release Device Power Data Nozzle Thrust Propulsion Flow Chart X 6 X 6

  25. Propulsion System Requirements • Provide enough thrust to control the system • Provide control in three axis • Build to KC-135 requirements • Must be able to withstand the pressure needed to obtain the required thrust

  26. Design Alternatives

  27. Design Alternatives, cont’d

  28. Thrust must be able to counter a 1 cm/sec initial velocity Structure mass is 5kg or less Model thrust using kinematics physics equations Graph of force vs time Steve Graph Range of thrust the system must produce 0.1 N – 0.7 N Choose batteries to supply power Choose solenoid based on thrust range Characterize power of solenoid Pick material to hold specific pressure The Solution Thrust must be able to control the position of the system to within 1 cm

  29. Miscalculation of thrust range Drives many components of system Use regulator on apparatus so it can be adjusted (within a certain range) Inability to meet specified power consumption requirement for solenoids OFF RAMP-use external power Basic model did not include Friction of air table Pressure losses in piping Risks and Outstanding Issues

  30. POWER Stephen Levin-Stankevich

  31. Cameras(2) 5V @ 200mA 5V Regulator Batteries COTS V >~ 8V I < ~ 1A Data Acquisition System 5V @ 200mA On/Off Switch High V High I Regulation Circuit Propulsion Solenoid Actuators

  32. Power Budget

  33. Batteries • AA rechargeable batteries • Provide simple interface • Low cost, lightweight, and easily obtainable • Easily adaptable if system requirements change • Propulsion design may require alternative • If high current and voltage cannot be supplied through a capacitor circuit to the solenoids a Li-Ion battery may be required for high current draws.

  34. Batteries – Trade Study Table

  35. SOFTWARE Stephen Levin-Stankevich

  36. Control System Block Diagram Camera Sensors X,Y,Z pos File on microcontroller Error Estimation In Software Control Law (trade study) Thrust Feedback Loop Courtesy of 2003 DFS Team

  37. Control System • Last year’s results show the bang-bang controller provides accurate results. • Primary work will be developing the control software for use with the microcontroller • Goal is to reduce dead-band size by implementing smaller thrust • Analog control of pressure for a P-D controller will be a project on-ramp.

  38. Control System – Trade Study Table

  39. Testing and Verification Chris Erickson

  40. Testing Options • Pendulum Setup • Suspend the structure from a tether and verify position control. • Spring Mass Setup • Attach the structure to a spring system in all 3 axes and verify position control. • Air table Setup • Test position control 2 axes at a time on the air table (test 2 axes and flip structure) • KC-135 • Test position control in a micro-gravity environment.

  41. Testing Options Trade

  42. Project Management Plan William Lumbergh

  43. Drag Free Spacecraft Project Manager Ryan Olds Prof Penina Axelrad Office: ECAE 159Phone: (303) 492-6872 Prof Steve Nerem Office: ECAE 100Phone: (303) 492-6721 Professor Advisory Board Safety Engineer Stephen Stankevich Mechanical Design Engineer Chris Erickson Instrumentation Engineer Mike Cragg Chief Financial Officer Mike Cragg Software Stephen Stankevich Katie Dunn Mike Cragg Ryan Olds Structure Chris Erickson Data Acquisition Mike Cragg Propulsion Katie Dunn Mike Cragg Power Stephen Stankevich Sensing Ryan Olds

  44. DRAFT-SatWork Breakdown Structure 1.0 Management 2.0 Systems 3.0 Testing 4.0 Software 5.0 Structure 6.0 Data Acquisition 7.0 Propulsion 8.0 Power 9.0 Sensing 1.1 Schedule 2.1 Integration of subsystems 3.1 Test planning 4.1 Extend existing code to 3 dimensions 5.1 Select materials 6.1 Select microcontroller 7.1 Select propellant and solenoids 8.1 Select power source 9.1 Select sensors 1.2 Task management 2.2 Design requirements 3.2 System and subsystem testing and verification 4.2 Improve performance of PD controller 5.2 House all subsystems 6.2 Program microcontroller 7.2 Thruster model 8.2 Supply power to all subsystems 9.2 Proof mass and cavity 1.3 Financial 2.3 Trade Studies 3.3 Technical reports 4.3 Translate MATLAB to C language 5.3 CG placement 6.3 Interface with sensors and propulsion 7.3 Propellant piping system 9.3 Interface with microcontroller 1.4 Team organization 3.4 Conform to all KC-135 requirements and regulations. 5.4 Machine structure 6.4 Store data in memory

  45. Schedule

  46. Cost Estimates

  47. Open Issues • Propulsion System Thrust Sizing and Part Selection • Microcontroller Setup • Battery Selection

  48. Questions?

  49. Appendix

  50. Sensors and Actuators Sensors • Control System • Camera • Propulsion • Fluid regulation device • Power • Voltage monitor Actuators • Propulsion • Fluid regulation device • Fluid release device

More Related