1 / 13

Graph Trigonometric Functions

Graph Trigonometric Functions. Objective: SWBAT graph sine, cosine and tangent curves. 2. The range is the set of y values such that. 5. Each function cycles through all the values of the range over an x -interval of. Properties of Sine and Cosine Functions.

elu
Télécharger la présentation

Graph Trigonometric Functions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Graph Trigonometric Functions Objective: SWBAT graph sine, cosine and tangent curves

  2. 2. The range is the set of y values such that . 5. Each function cycles through all the values of the range over an x-interval of . Properties of Sine and Cosine Functions Properties of Sine and Cosine Functions The graphs of y = sin x and y = cos x have similar properties: 1. The domain is the set of real numbers. 3. The maximum value is 1 and the minimum value is –1. 4. The graph is a smooth curve. 6. The cycle repeats itself indefinitely in both directions of thex-axis.

  3. x 0 cos x 1 0 -1 0 1 y = cos x y x Graph of the Cosine Function Cosine Function To sketch the graph of y = cos x first locate the key points.These are the maximum points, the minimum points, and the intercepts. Then, connect the points on the graph with a smooth curve that extends in both directions beyond the five key points. A single cycle is called a period.

  4. x 0  2 3 0 -3 0 3 y = 3 cos x max x-int min x-int max y (0, 3) ( , 3) x ( , 0) ( , 0) ( , –3) Example: Sketch the graph of y = 3 cos x on the interval [–, 4]. Example: y = 3 cos x Partition the interval [0, 2] into four equal parts. Find the five key points; graph one cycle; then repeat the cycle over the interval.

  5. y y = sin x x y = sin x y = 2 sin x y = –4 sin x reflection ofy = 4 sin x y = 4sin x The amplitude of y = a sin x (or y = a cos x) is half the distance between the maximum and minimum values of the function. Amplitude amplitude = |a| If |a| > 1, the amplitude stretches the graph vertically. If 0 < |a| > 1, the amplitude shrinks the graph vertically. If a < 0, the graph is reflected in the x-axis.

  6. For b 0, the period of y = a sin bx is . For b 0, the period of y = a cos bx is also . period: period: 2 y x y period: 2 x period: 4 The period of a function is the x interval needed for the function to complete one cycle. Period of a Function If 0 < b < 1, the graph of the function is stretched horizontally. If b > 1, the graph of the function is shrunk horizontally.

  7. y = sin(–x) x y y x y = cos (–x) Use basic trigonometric identities to graph y = f(–x) Graph y = f(-x) Example 1: Sketch the graph of y = sin(–x). The graph of y = sin(–x) is the graph of y = sin x reflected in the x-axis. Use the identity sin(–x) = – sin x y = sin x Example 2: Sketch the graph of y = cos(–x). The graph of y = cos (–x) is identical to the graph of y = cos x. Use the identity cos(–x) = – cos x y = cos (–x)

  8. 2 2 period: = 3 y ( , 2) x (0, 0) ( , 0) ( , 0) ( ,-2) x 0 0 2 –2 y = –2 sin 3x 0 0 Example 3: Sketch the graph of y = 2 sin(–3x). Example: y = 2 sin(-3x) Rewrite the function in the form y = a sin bx with b > 0 y = 2 sin (–3x) = –2 sin 3x Use the identity sin (– x) = – sin x: amplitude: |a| = |–2| = 2 Calculate the five key points.

  9. To graph y = tan x, use the identity . y Properties of y = tan x 1. domain : all real x x 4. vertical asymptotes: period: Graph of the Tangent Function Tangent Function At values of x for which cos x = 0, the tangent function is undefined and its graph has vertical asymptotes. 2. range: (–, +) 3. period: 

  10. Example: Find the period and asymptotes and sketch the graph of y 1. Period of y = tanx is π . x 3. Plot several points in Example: Tangent Function 2.Find consecutive vertical asymptotesby solving for x: Vertical asymptotes: 4. Sketch one branch and repeat.

  11. y To graph y = cot x, use the identity . Properties of y = cot x x 1. domain : all real x 4. vertical asymptotes: vertical asymptotes Graph of the Cotangent Function Cotangent Function At values of x for which sin x = 0, the cotangent function is undefined and its graph has vertical asymptotes. 2. range: (–, +) 3. period: 

  12. The graph y = sec x, use the identity . y Properties of y = sec x 1. domain : all real x x 4. vertical asymptotes: Graph of the Secant Function Secant Function At values of x for which cos x = 0, the secant function is undefined and its graph has vertical asymptotes. 2. range: (–,–1]  [1, +) 3. period: 2

  13. To graph y = csc x, use the identity . y Properties of y = csc x 1. domain : all real x x 4. vertical asymptotes: Graph of the Cosecant Function Cosecant Function At values of x for which sin x = 0, the cosecant functionis undefined and its graph has vertical asymptotes. 2. range: (–,–1]  [1, +) 3. period: 2 where sine is zero.

More Related