440 likes | 460 Vues
Dive into the world of nanofriction with a comprehensive overview of experimental methods, theoretical models, and simulation techniques. Understand the complexities of friction at the nanoscale and its relevance in nanotechnology. Learn about key historical figures and modern research in the field.
E N D
NANOFRICTION-- AN INTRODUCTION E. Tosatti SISSA/ICTP/Democritos TRIESTE
Contents 1. Friction. Generalities, history. 2. “Stick-slip” versus smooth sliding; friction mechanisms. 3. Nanofriction: experimental methods. AFM, QCM, SFA… 4. Nanofriction: theory . a). Linear response b). Nonlinear friction in simple models: Prandtl-Tomlinson, Frenkel-Kontorova c). Simulated nanofriction: Molecular Dynamics--applications
FRICTION NANOFRICTION FN FL (MEYER) (BRAUN) FRICTION COEFFICIENT: m = FL/ FN (usually~0.1-1) General Refs: B.N.J. PERSSON, Sliding Friction, Springer (2000); J.KRIM, Surf. Sci. 500, 741 (2002)
RELEVANCE -- FRICTION: energy conservation; machine wear; ... -- NANOFRICTION: basic understanding; nanotechnology.
HISTORY LEONARDO DA VINCI 1. Friction is independent of the geometrical contact area 2. Friction is proportional to normal load AMONTONS Guillaume Amontons (1663-1705)
COULOMB 3. Friction independent of velocity 4. Friction tied to roughness EULER 5. Static vs. dynamic friction
STATIC vs DYNAMIC FRICTION SLIDING VELOCITY Fs= Fd Fk= Fr APPLIED FORCE
WHY FRICTION IS INDEP. OF AREA, AND PROPORT. TO LOAD Philip Bowden 1903-1968 Real contact surface AR= FN/s << A DaVinci-Amonton's law explained: FL = t AR = t FN /s = m FN yield stress BOWDEN - TABOR, 1950s David Tabor 1913-2005
Rodrigues et al. (2000) Au NANOCONTACTS
MORE GENERAL SLIDING FRICTION MECHANISMS -- Entanglement of asperities, plastic deformation, wear (commonest macroscopic friction mechanism) -- Viscous friction (fluid interfaces, acquaplaning) -- Phonon dissipation, elastic deformation (flat solid interfaces) -- Bulk viscoelastic dissipation (e.g., car tyres) -- Electronic friction (metals, still being established) -- Vacuum friction (more speculative) -- .....
6. Stick-slip motion vs smooth sliding low velocity &/or soft system high velocity &/or stiff system
SOME EXPERIMENTAL NANOFRICTION METHODS
SOME EXPERIMENTAL TECHNIQUES MACRO-MESOSCOPIC NANO Tabor, Winterton, Israelachvili (~1975) Binnig, Quate, Gerber (1986)
FRICTION NANOFRICTION (MEYER) GERD BINNIG HEINI ROHRER
AFM INSTRUMENTS Measure FL , F N Typical F N1-100 nN (MEYER)
NaCl(100) (MEYER et al) -- “ATOMIC” STICK-SLIP MOTION OF TIP -- ENCLOSED AREA IN (F, x) PLANE EQUALS DISSIPATED FRICTIONAL ENERGY
QCM (QUARTZ CRYSTAL MICROBALANCE) a Slip timet: 2 t: = d (Q-1)/dw KRIM, WIDOM, PRB 38, 12184 (1986)
QCM Frequency n= 107 Hz Amplitude a = 100 Angstrom Velocity v ~ 2pna ~ 0.6m/s |Finertial|~ M (2pn)2 a = 3 x 10-15N ~3 x 10-6nN VERY WEAK FORCE --> LINEAR RESPONSE REGIME!
THEORY (a) LINEAR RESPONSE
ZERO EXTERNAL FORCE: 2D BROWNIAN DIFFUSION <r2> = 4 Dt y x
LINEAR RESPONSE THEORY < v > /m =F ---->> “viscous” friction m = mobility EINSTEIN RELATION m=D/ kBT D = S (w=0) S (w) = F.T. { <v(t) - v(0)>} VIVISCOUS FRICTION GOOD FOR FLUIDS, BUT NOT FOR SOLIDS: VIOLATES “OBEY” COULOMB’S LAW, F DEPENDENT ON VELOCITY
THEORY (b) SIMPLE (“MINIMALISTIC” ) FRICTION AND NANOFRICTION MODELS
PRANDTL-TOMLINSON MODEL (1928) v keff H= (E0/2)cos(2pxtip/a) + (keff/2)(xtip-x)2+damping
STIFF SOFT LARGE K SMALL E LARGE E SMALL K SMOOTH SLIDING STICK-SLIP SLIDING F~ log v “COULOMB”! F~ v SASAKI, KOBAYASHI, TSUKADA, PRB 54 ,2138 (1996)
FRENKEL-KONTOROVA MODEL (1938) K e O.M.BRAUN, YU.S.KIVSHAR, The Frenkel Kontorova Model: Concepts, Methods, Applications, Springer (2004)
THE AUBRY TRANSITION INCOMMENSURATE: a c / a b = IRRATIONAL Fstatic SLIDING K e PINNED e g = K / gc gg g >gc ZERO STATIC FRICTION g <gc FINITE STATIC FRICTION (“PINNING”)
PHONON GAP OF PINNED SLIDER w2 g > gc g < gc q q
THEORY (c) NANOFRICTION SIMULATIONS -- NEWTONIAN or LANGEVIN DYNAMICS -- FROM MODELS TO REALISTIC MOLECULAR DYNAMICS (MD) -- MD: EMPIRICAL AND AB INITIO FORCES -- VARIETY OF SYSTEMS, APPLICATIONS
MOLECULAR DYNAMICS SIMULATIONS NEWTON TOT (FREE) EN. LANGEVIN THERMAL NOISE + - gvi(t)+ hi(t)
EMPIRICAL INTERPARTICLE FORCES (EXAMPLE: LENNARD-JONES PAIR POTENTIAL)
SLAB GEOMETRY FREE SURFACE PBC PBC FREE SURFACE
EXAMPLE: “GRAZING” FRICTION SIMULATION Diamond V NaCl
Load = 1.0 nN T = 1100 K (6 Ang) Zykova-Timan, et al, Nature Materials6, 231 (2007)
EXAMPLE: “PLOWING” FRICTION WITH WEAR HIGH TEMPERATURE NANOFRICTION, DIAMOND ON NaCl(100) Zykova-Timan, Ceresoli, Tosatti, Nature Materials6, 231 (2007)
PLOWING FRICTION FORCES v = 50 m/s T=1100 K Normal force 6 Angstrom penetration
HIGH T FRICTIONAL DROP: SKATING “SKATING” TIP IN LOCAL LIQUID CLOUD FURROW CLOSES UP BEHIND TIP v = 50 m/s
SIMULATED LUBRICATION (BRAUN)
SQUEEZOUT TARTAGLINO, SIVEBAEK, PERSSON, TOSATTI, J. Chem Phys 125, 014704 (2006)
WHERE DOES THE ENERGY GO? WEAR + PHONONS IN SIMULATION, THE THERMOSTATING METHOD MAY INFLUENCE AND FALSIFY THE REAL PHONON FRICTION Temp.(K) t (fs)
SUMMARY FRICTION OFFERS MUCH MORE INTEREST AT NANOSCALE SIMPLE MODELS DEMONSTRATE STICK-SLIP, PINNING TRANSITION SIMULATIONS EXTREMELY USEFUL AND PREDICTIVE IN NANOFRICTION DISPOSAL OF DISSIPATED PHONON ENERGY NEEDS SPECIAL ATTENTION THE END
SOME REFERENCES General : B.N.J. PERSSON, Sliding Friction, Springer (2000); J.KRIM, Surf. Sci. 500, 741 (2002) Stic-slip in Prandtl- Tomlinson Model:SASAKI, KOBAYASHI, TSUKADA, PRB 54 ,2138 (1996) Frenkel-Kontorova Model: O.M.BRAUN, YU.S.KIVSHAR, The Frenkel Kontorova Model: Concepts, Methods, Applications, Springer (2004) Nanofriction Simulation: Zykova-Timan et al, Nat. Materials6, 231 (2007) Squeezout Simulation: TARTAGLINO, SIVEBAEK, PERSSON, TOSATTI, J. Chem Phys 125, 014704 (2006) Nanoscale Rolling Simulation: O.M. BRAUN, PRL (2006)