1 / 14

Dick Bolt Code 302 May 13-17, 2002

Micro-Arcsecond Imaging Mission, Pathfinder (MAXIM-PF). Mission Success. Dick Bolt Code 302 May 13-17, 2002. Summary. Mission Success Even with Fully Redundant S/C buses, the continuing Phase I & II operation is expected to have low probability of completing the full four (4) Year mission

emilia
Télécharger la présentation

Dick Bolt Code 302 May 13-17, 2002

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Micro-Arcsecond Imaging Mission, Pathfinder (MAXIM-PF) Mission Success Dick Bolt Code 302 May 13-17, 2002

  2. Summary • Mission Success • Even with Fully Redundant S/C buses, the continuing Phase I & II operation is expected to have low probability of completing the full four (4) Year mission • Design Considerations • Hub S/C • Recommend either redundant Laser ranger devices or Laser beams from at least (2) separate Laser devices of both wide & narrow beam • Detector S/C • Redundant design looks good • Free Flyer S/Cs • Redundant design looks good • Mission Success Alternatives • From a Reliability standpoint, other designs should be considered • Two separate Detector S/C (single string) with: • Single Hub S/C (Fully Redundant) with Free Flyers or: • Two separate Hubs ( single string ) without Free Flyers • R&S Support Cost • 1 Million $ To support both Reliability & System Safety effort for at least 3 years MAXIM-PF, May 13-17, 2002Goddard Space Flight Center

  3. Assumptions • Mission Length • Phase I • Mission length to be 1 Yr with Phase II to follow. Six (6) Months to get in orbit • Phase II • Mission length to be 3 Yrs / 5 Year Goal • Total ( Phase I & II ) • Four (4) Years with 5 Year Goal • Redundancy • Hub S/C –-Put Redundancy into Hub design & not Free Flyer • Detector S/C –Fully redundant design needed MAXIM-PF, May 13-17, 2002Goddard Space Flight Center

  4. S/C Components • Phase I • Lens S/C (Hub) • Tunable X-Ray Optical System • Star Tracker • S/C Bus • Propulsion System • ACS • Laser Ranger to Detector S/C • Six(6) attached Free Flyers acting as extra X-Ray reflectors • Detector S/C • RF Com to Earth • Propulsion System • ACS ############################################## • Phase II • Lens S/C (Hub) • Tunable X-Ray Optical System • Star Tracker • S/C Bus • Propulsion System • ACS • Laser Ranger • Detachable Lens sections ( 6 units ) • Release Mech. • Tunable X-Ray Optical System • Detector S/C • Super Star Tracker • Cryo Cooler • RF Com to Earth • Propulsion System • ACS MAXIM-PF, May 13-17, 2002Goddard Space Flight Center

  5. Reliability Block DiagramPhase I Hub S/C Bus Hub Devices Detector S/C Bus Detector Devices FF Bus Launch Vehicle Delta IV Hydrazine Injection Propulsion System MAXIM-PF, May 13-17, 2002Goddard Space Flight Center

  6. Reliability Block DiagramPhase II Hub S/C Detector Devices Detector S/C Bus Hub Devices Hub Tunable Mirrors Hub S/C Bus FF Bus FF Laser Com Detector S/C Free Flyer (FF #1) S/C #1 of 6 FF #2 FF # 3 Hydrazine Injection Propulsion System FF # 4 Launch Vehicle Delta IV FF # 5 FF # 6 MAXIM-PF, May 13-17, 2002Goddard Space Flight Center

  7. Quick Mission Reliability Estimate • Phase I • Best Case Est. Mode I ( 2 Yr Mission ) 1? Without LV & Injector Prop. : .9 X.98 X.9 X.98 = 78% @ 1 Yr With LV & Injector Prop.: .78 X .94 X .99 = 72 % @ 1 Yr • Phase I & II • Best Case Est. Mode I & II ( 4 Yr Mission Total ) Without LV & Injector Prop. : .9 X.95 X.9 X.95 = 63% @ 4 Yrs With LV & Injector Prop.: .63 X .94 X .99 = 58.6% @ 4 Yrs LV=Launch Vehicle MAXIM-PF, May 13-17, 2002Goddard Space Flight Center

  8. Launch Vehicle • Delta IV • 94% Launch success Est. by Mfg. • Air Force committed to future launches • 1st stage is new design • Hydrazine Propulsion L-2 Orbit Injection System • No Reliability info, assume similar to S/C Hydrazine propulsion system • 99% or better MAXIM-PF, May 13-17, 2002Goddard Space Flight Center

  9. Deployments • Hub S/C • Laser Lens Cap • 6 Detachable Free Flyers • Detector S/C • 2 RF X-Band High Gain (dish) Antennas • Free Flyer S/Cs • None on S/C • Separation Systems • Separation of Hydrazine Propulsion Orbit Insertion System • Separation of Hub from Detector & attached Free Flyers • Separation of Six(6) separate Free Flyer units from the Hub MAXIM-PF, May 13-17, 2002Goddard Space Flight Center

  10. PRA Support & CostsReliability & System Safety Full PRA Version Requirement Assumed Will likely include Fault Tree Success Diagram Full Reliability evaluation for both Spacecraft Bus & all Instruments Reliability GSFC Code 302 would likely play the coordinator of the operation even if an RSDO bus was chosen Instrument Reliability will likely be done by design & builder of each. System Safety GSFC Code 302 would likely play the coordinator of the Safety Data Package ( Only one(1) expected to cover all) even if an RSDO bus was chosen Cost Estimate: 1.0 Million $ Basis is: 1 FTE ( based on GSFC contractor $ ) for each discipline for 3 years . Likely more if GSFC Code 302 monitors or supervises coordination of effort by other contractors MAXIM-PF, May 13-17, 2002Goddard Space Flight Center

  11. Back-Up Slides See RSDO S/C Bus Reliability Information Graph MAXIM-PF, May 13-17, 2002Goddard Space Flight Center

  12. RSDO S/C Bus Reliability For One (1) Year Mission S/C Bus Reliability Curve Fully Redundant Reliability % Single String Failure Rate in Failures / Million Hrs MAXIM-PF, May 13-17, 2002Goddard Space Flight Center

  13. Single S/C 3 YearBus Reliability 3 Year Mission—Spacecraft Bus Only (Based On RSDO S/C Bus Reliability Info) Fully Redundant S/C Bus Partially Redundant S/C Bus Area Single String S/C Bus MAXIM-PF, May 13-17, 2002Goddard Space Flight Center

  14. RSDO S/C Bus Reliability For Four (4) Year Mission Fully Redundant S/C Bus area Reliability Failure Rate MAXIM-PF, May 13-17, 2002Goddard Space Flight Center

More Related