200 likes | 400 Vues
Falling Chain. Luu Chau Kayla Chau Jonathan Bernal. On the paradox of the free falling folded chain M.Schagerl A. Steindl W. Steiner H. Troger Dr. Tyler McMillen. Reference. speed=1; % speed of falling chain (1_slow 100_fast) T=1; % time of calculations (secs)
E N D
Falling Chain Luu Chau Kayla Chau Jonathan Bernal
On the paradox of the free falling folded chain • M.Schagerl • A. Steindl • W. Steiner • H. Troger Dr. Tyler McMillen Reference
speed=1; % speed of falling chain (1_slow 100_fast) T=1; % time of calculations (secs) n=7; % number of links (must be odd number) frames=5; % number of frames per T M=15; % total mass of the chain L=2; % length of the chain (meters) m=1; % mass attached to end of chain a=.00475; % length of link b=.0025; % width of link e=b/a; % ratio h=L/n; % distance between two joints mu=M/n; % mass of each link g=9.81; % gravity times=linspace(0,T,frames); % number of moments p.156 Initial Condition for Parameters
JOINT
initial=[zeros(1,(n-1)/2) pi/2 ones(1,(n-1)/2)*pi zeros(1,n)]; initial = 0 0 0 1.5708 3.1416 3.1416 3.1416 0 0 0 0 0 0 0 Initialize Condition for Chain
Moment of Inertia Forces acting on joints Reference p.157,162
Iy=((mu*h^2)/12)*(2*a/h)^2*(1+3*e)/(1+e); %moment of inertia Iz=((mu*h^2)/12)*(2*a/h)^2*(1+e)^2; %moment of inertia for i=1:n for j=1:n G(i,j)=(M/mu)*h+n*h-(max(i,j)-0.5)*h; %nxn matrix, equations of motion end if (i/2)==(i-ceil(i/2)) %if “i” is even I(i)=Iz; else %if “i” is odd I(i)=Iy; end end p.157,162 Calculate Moments of Inertia
[t, phi] = ode23(@equation,times,initial); Compute Angles
t = phi = 0 0 0 0 1.5708 3.1416 3.1416 3.1416 0.2500 -0.0442 0.0491 0.2926 0.3162 2.5375 3.3701 3.0859 0.5000 0.0887 0.0322 0.3209 0.0319 -0.1541 0.9014 3.2265 0.7500 -0.5014 1.4469 0.0484 -1.4148 0.3501 0.3505 -0.1128 1.0000 -0.0366 -0.5347 0.2591 -1.1734 2.4062 3.1726 -0.9964 ODE output
Coordinates of joints Reference p.161
for i=1:frames for j=2:n+1 x(i,j)=x(i,j)+h*sum(sin(phi(i,1:j-1))); y(i,j)=y(i,j)-h*sum(cos(phi(i,1:j-1))); end end p. 161 Compute Coordinates of Each Joint
x = 0 0 0 0 0.2857 0.2857 0.2857 0.2857 0 -0.0126 0.0014 0.0838 0.1726 0.3349 0.2702 0.2861 0 0.0253 0.0345 0.1247 0.1338 0.0899 0.3140 0.2897 0 -0.1373 0.1462 0.1600 -0.1222 -0.0242 0.0739 0.0417 0 -0.0105 -0.1561 -0.0829 -0.3463 -0.1546 -0.1635 -0.4034 y = 0 -0.2857 -0.5714 -0.8571 -0.8571 -0.5714 -0.2857 0 0 -0.2854 -0.5708 -0.8444 -1.1159 -0.8808 -0.6025 -0.3172 0 -0.2846 -0.5702 -0.8413 -1.1269 -1.4092 -1.5865 -1.3018 0 -0.2505 -0.2859 -0.5712 -0.6156 -0.8840 -1.1524 -1.4363 0 -0.2855 -0.5314 -0.8075 -0.9181 -0.7062 -0.4206 -0.5759 Output
xball=0.4; yball=-0.5*g*times.^2; plot(times,yball,'b',times,y(:,n+1),'r') Plot Graph
for i=1:frames plot(x(i,:),y(i,:),'.-') %chain hold on plot(x(i,n+1),y(i,n+1),'o','MarkerFaceColor','r','MarkerSize',8) %end of chain plot(xball,yball(i),'o','MarkerFaceColor','g','MarkerSize',9) %falling object axis([-2 2 -L 0]) mov(i)=getframe; hold off end movie(mov,2,speed) Plot Movie
movie(mov,1,speed) Movie
n equations of motion (for each link) Reference p.162
for i=1:n % right side of equation 4.2 f(i+n)=-h*sum(sin(X(i)-X(1:n)).*X(n+1:2*n).^2.*G(i,:)')-g*sin(X(i))*G(i,i); A(i,1:n)=(h*cos(X(i)-X(1:n)).*G(i,:)')'; % left side of 4.2 A(i,i)=A(i,i)+(I(i)/mu-h^2/4); end re1=A\f(n+1:2*n)'; re = [X(n+1:2*n); re1]; p.162 Function in ODE