1 / 75

Graph Searching Algorithms

Graph Searching Algorithms. Tree. Breadth-First Search (BFS). Breadth-First Search (BFS). Not discovered. white. u. ∞. 0. x. Discovered, adjacent white nodes. gray. v. y. ∞. ∞. Discovered, no adjacent white nodes. black. w. ∞. ∞. z. Breadth-First Search (BFS). u. ∞. 0.

fai
Télécharger la présentation

Graph Searching Algorithms

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Graph Searching Algorithms

  2. Tree

  3. Breadth-First Search (BFS)

  4. Breadth-First Search (BFS) Not discovered white u ∞ 0 x Discovered, adjacent white nodes gray v y ∞ ∞ Discovered, no adjacent white nodes black w ∞ ∞ z

  5. Breadth-First Search (BFS) u ∞ 0 x BFS(G, u): 1. Initialize the graph color[u]  gray π[u]  Nil d[u]  0 for each other vertex color[u]  white v y ∞ ∞ w ∞ ∞ z

  6. Breadth-First Search (BFS) Q u ∞ 0 x u BFS(G, u): 2. Initialize the queue Q  Ø Enqueue(Q, u) v y ∞ ∞ w ∞ ∞ z

  7. Breadth-First Search (BFS) t = u Q u ∞ 0 x BFS(G, u): 3. While Q ≠ Ø 1) tDequeue(Q) v y ∞ ∞ w ∞ ∞ z

  8. Breadth-First Search (BFS) t = u r = x, v Q u 1 0 x v x BFS(G, u): 3. While Q ≠ Ø 2) for each radj to t if color[r] = white color[r]  gray π[r] t d[r] d[t] + 1 Enqueue(Q, r) v y ∞ 1 w ∞ ∞ z

  9. Breadth-First Search (BFS) t = u r = x, v Q u 1 0 x v x BFS(G, u): 3. While Q ≠ Ø 3) color[t]  black v y ∞ 1 w ∞ ∞ z

  10. Breadth-First Search (BFS) t = v Q u 1 0 x x BFS(G, u): 3. While Q ≠ Ø 1) tDequeue(Q) 2) for each radj to t … 3) color[t]  black v y ∞ 1 w ∞ ∞ z

  11. Breadth-First Search (BFS) t = v r = y Q u 1 0 x x y BFS(G, u): 3. While Q ≠ Ø 1) tDequeue(Q) 2) for each radj to t … 3) color[t]  black v y 2 1 w ∞ ∞ z

  12. Breadth-First Search (BFS) t = v r = y Q u 1 0 x x y BFS(G, u): 3. While Q ≠ Ø 1) tDequeue(Q) 2) for each radj to t … 3) color[t]  black v y 2 1 w ∞ ∞ z

  13. Breadth-First Search (BFS) t = x r = Q u 1 0 x y BFS(G, u): 3. While Q ≠ Ø 1) tDequeue(Q) 2) for each radj to t … 3) color[t]  black v y 2 1 w ∞ ∞ z

  14. Breadth-First Search (BFS) t = y r = w Q u 1 0 x w BFS(G, u): 3. While Q ≠ Ø 1) tDequeue(Q) 2) for each radj to t … 3) color[t]  black v y 2 1 w 3 ∞ z

  15. Breadth-First Search (BFS) t = w r = z Q u 1 0 x z BFS(G, u): 3. While Q ≠ Ø 1) tDequeue(Q) 2) for each radj to t … 3) color[t]  black v y 2 1 w 3 4 z

  16. Breadth-First Search (BFS) t = z r = Q u 1 0 x BFS(G, u): 3. While Q ≠ Ø 1) tDequeue(Q) 2) for each radj to t … 3) color[t]  black v y 2 1 w 3 4 z

  17. Breadth-First Search (BFS) u 1 0 x BFS(G, u): - the shortest-path distance from u v y 2 1 w 3 4 z

  18. Breadth-First Search (BFS) u 1 0 x BFS(G, u): - the shortest-path distance from u - construct a tree v y 2 1 w 3 4 z

  19. Breadth-First Search (BFS) u 1 0 x BFS(G, u): - Initialization: |V| - Enqueuing/dequeuing: |V| - Scanning adj vertices: |E| v y 2 1 w 3 4 z

  20. Breadth-First Search (BFS) u 1 0 x BFS(G, u): - Initialization: O(|V|) - Enqueuing/dequeuing: O(|V|) - Scanning adjacent vertices: O(|E|) => total running time: O(|V| + |E|) v y 2 1 w 3 4 z

  21. Depth-First Search (DFS)

  22. Depth-First Search (DFS) d[u]: when u is discovered f[u]: when searching adj of u is finished u v w

  23. Depth-First Search (DFS) timestamp: t d[u]: when u is discovered f[u]: when searching adj of u is finished d[u] = t u v w

  24. Depth-First Search (DFS) timestamp: t+1 d[u]: when u is discovered f[u]: when searching adj of u is finished d[u] = t u v w d[v] = t+1

  25. Depth-First Search (DFS) timestamp: t+2 d[u]: when u is discovered f[u]: when searching adj of u is finished d[u] = t u v w d[v] = t+1 f[v] = t+2

  26. Depth-First Search (DFS) timestamp: t+3 d[u]: when u is discovered f[u]: when searching adj of u is finished d[u] = t u v w d[v] = t+1 f[v] = t+2 d[w] = t+3

  27. Depth-First Search (DFS) timestamp: t+4 d[u]: when u is discovered f[u]: when searching adj of u is finished d[u] = t u v w d[v] = t+1 f[v] = t+2 d[w] = t+3 f[v] = t+4

  28. Depth-First Search (DFS) timestamp: t+5 d[u]: when u is discovered f[u]: when searching adj of u is finished d[u] = t f[u] = t+5 u v w d[v] = t+1 f[v] = t+2 d[w] = t+3 f[w] = t+4

  29. Depth-First Search (DFS) d[u]: when u is discovered f[u]: when searching adj of u is finished d[u] = t f[u] = t+5 u d[u] < f[u] [ d[u], f[u] ] entirely contains [ d[v], f[v] ] [ d[v], f[v] ] and [ d[w], f[w] ] are entirely disjoint v w d[v] = t+1 f[v] = t+2 d[w] = t+3 f[w] = t+4

  30. Depth-First Search (DFS) Not discovered white u x Discovered, adjacent white nodes gray v y Discovered, no adjacent white nodes black w z

  31. Depth-First Search (DFS) Not discovered u x Discovered, adjacent white nodes d / v y Discovered, no adjacent white nodes d / f w z

  32. Depth-First Search (DFS) u x DFS(G): 1. Initialization for each u V[G], color[u]  white π[u]  Nil time  0 v y w z

  33. Depth-First Search (DFS) u 1/ x DFS(G): 1. Initialization 2. For each u V[G] if color[u] = white DFS-Visit(u) v y DFS-Visit(u): 1. Initial Setting color[u]  gray d[u]  time  time + 1 w z

  34. Depth-First Search (DFS) u 1/ x DFS(G): 1. Initialization 2. For each u V[G] if color[u] = white DFS-Visit(u) v y 2/ DFS-Visit(u): 1. Initial Setting 2. for each adjv of white π[v] u DFS-Visit[v] w z

  35. Depth-First Search (DFS) u 1/ x DFS(G): 1. Initialization 2. For each u V[G] if color[u] = white DFS-Visit(u) v y 3/ 2/ DFS-Visit(u): 1. Initial Setting 2. for each adjv of white π[v] u DFS-Visit[v] w z

  36. Depth-First Search (DFS) u 4/ 1/ x DFS(G): 1. Initialization 2. For each u V[G] if color[u] = white DFS-Visit(u) v y 3/ 2/ DFS-Visit(u): 1. Initial Setting 2. for each adjv of white π[v] u DFS-Visit[v] w z

  37. Depth-First Search (DFS) u 4/5 1/ x DFS(G): 1. Initialization 2. For each u V[G] if color[u] = white DFS-Visit(u) v y 3/ 2/ DFS-Visit(u): 1. Initial Setting 2. Handling adj vertices 3. color[u]  black f[u]  time  time + 1 w z

  38. Depth-First Search (DFS) u 4/5 1/ x DFS(G): 1. Initialization 2. For each u V[G] if color[u] = white DFS-Visit(u) v y 3/6 2/ DFS-Visit(u): 1. Initial Setting 2. Handling adj vertices 3. color[u]  black f[u]  time  time + 1 w z

  39. Depth-First Search (DFS) u 4/5 1/ x DFS(G): 1. Initialization 2. For each u V[G] if color[u] = white DFS-Visit(u) v y 3/6 2/7 DFS-Visit(u): 1. Initial Setting 2. Handling adj vertices 3. color[u]  black f[u]  time  time + 1 w z

  40. Depth-First Search (DFS) u 4/5 1/8 x DFS(G): 1. Initialization 2. For each u V[G] if color[u] = white DFS-Visit(u) v y 3/6 2/7 DFS-Visit(u): 1. Initial Setting 2. Handling adj vertices 3. color[u]  black f[u]  time  time + 1 w z

  41. Depth-First Search (DFS) u 4/5 1/8 x DFS(G): 1. Initialization 2. For each u V[G] if color[u] = white DFS-Visit(u) v y 3/6 2/7 DFS-Visit(u): 1. Initial Setting 2. Handling adj vertices 3. color[u]  black f[u]  time  time + 1 w 9/ z

  42. Depth-First Search (DFS) u 4/5 1/8 x DFS(G): 1. Initialization 2. For each u V[G] if color[u] = white DFS-Visit(u) v y 3/6 2/7 DFS-Visit(u): 1. Initial Setting 2. Handling adj vertices 3. color[u]  black f[u]  time  time + 1 w 9/ 10/ z

  43. Depth-First Search (DFS) u 4/5 1/8 x DFS(G): 1. Initialization 2. For each u V[G] if color[u] = white DFS-Visit(u) v y 3/6 2/7 DFS-Visit(u): 1. Initial Setting 2. Handling adj vertices 3. color[u]  black f[u]  time  time + 1 w 9/ 10/11 z

  44. Depth-First Search (DFS) u 4/5 1/8 x DFS(G): 1. Initialization 2. For each u V[G] if color[u] = white DFS-Visit(u) v y 3/6 2/7 DFS-Visit(u): 1. Initial Setting 2. Handling adj vertices 3. color[u]  black f[u]  time  time + 1 w 9/12 10/11 z

  45. Depth-First Search (DFS) u 4/5 1/8 x DFS(G): - construct a forest v y 3/6 2/7 w 9/12 10/11 z

  46. Depth-First Search (DFS) u 4/5 1/8 x DFS(G): - Initialization: O(|V|) - Traversing vertices: O(|V|) - Scanning adjacent vertices: O(|E|) => total running time: O(|V| + |E|) v y 3/6 2/7 w 9/12 10/11 z

  47. Topological Sorting m n o s q r t u m n q o s r u t

  48. Topological Sorting Brute-Force way 1. Find a vertex without edges. 2. Put it onto the front of the list, and remove it from G. 3. Remove all edges to the removed edge. 4. Repeat 1~3. m n o s q r t u O(|V|2 + |V||E|) Or O(|V|2)

  49. Topological Sorting Using DFS 1. Call DFS(G) 2. When a vertex is finished, put it onto the front of the list. m n o s q r t u O(|V| + |E|)

  50. Topological Sorting v enters the list before u? u Using DFS 1. Call DFS(G) 2. When a vertex is finished, put it onto the front of the list. v 1) v is white: d[u] < d[v] < f[u] 2) v is black: f[v] < d[u] 3) v is gray: d[v] < d[u] < f[v] At d[u]:

More Related