1 / 25

Mesoproterozoic to Late Paleozoic Supercontinent

Mesoproterozoic to Late Paleozoic Supercontinent Collisions and Fragmentation – the Record from South- Central Laurentia and Insights from Zircon U/Pb Data. Patricia W. Dickerson, Edna Rodríguez, Daniel F. Stockli, Richard E. Hanson, Jonathon M. Roberts and C. Mark Fanning

fhunter
Télécharger la présentation

Mesoproterozoic to Late Paleozoic Supercontinent

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mesoproterozoic to Late Paleozoic Supercontinent Collisions and Fragmentation – the Record from South- Central Laurentia and Insights from Zircon U/Pb Data Patricia W. Dickerson, Edna Rodríguez, Daniel F. Stockli, Richard E. Hanson, Jonathon M. Roberts and C. Mark Fanning SOUTH-CENTRAL GSA – LITTLE ROCK, 2018

  2. Southern Laurentia S

  3. Southern Laurentia – West Texas Ouachita-Marathon thin-skinned fold and thrust belt Goetz in Goetz & Dickerson (1985) Deformed as Pangaea was born, Marathon fold-thrust belt provides new insight into the dying days of Rodinia Diablo Platform Ancestral Rockies-style basement-cored uplift

  4. L–M Ordovician Strata Bearing Igneous Clasts (Roberts et al., 2010) Host strata: Shelf-derived fossiliferous limestone conglomerates within off-shelf deposits, western Ouachita-Cuyania Basin Deposits spanning ~35 Ma (Intl. Subcom. Ord. Strat., 2007) 3 formations to date: Woods Hollow (Sandbian) Ft. Peña Formation (Darriwilian) Marathon Formation (Floian)

  5. Silicified Alkali Basalt Boulder in Limestone CobbleConglomerate, Marathon Fm (Hanson et al., 2016)

  6. Rift-Related Intraplate Magmatism – Rodinia Breakup: Basalt & Trachyandesite Clasts in Fort Peña Fm Conglomerate ~706 Ma U/Pb, zircon (Hanson, Roberts, Dickerson, & Fanning, 2012, 2013) Basalt, open blue circle Trachyandesite, blue X Trachyandesite, polarized light

  7. Geochronology - Marathon & Ft. Peña BasaltsU-Pb, SHRIMP (Fanning, ANU) Marathon basalt boulder 207Pb/206Pb ages from 1920 to 1270 Ma 1500 Ma – Granite-Rhyolite Province, 1270 Ma - Grenvillian Ft. Peña basalt boulder 1 - 1232 Ma (Grenvillian) Ft. Peña basalt boulder 2 - 722 and 658 Ma (Cryogenian)

  8. Felsic Tuff Clasts Marathon Fm, Monument Spring Mbr U/Pb, LA-ICPMS - zircon (Stockli, UT-Austin) 207Pb/206Pb ages: 1300 Ma – Granite-Rhyolite Province 1200-1100 Ma – Grenvillian basement 750-700 Ma – Cryogenian rift volcanism ~520 Ma – Eocambrian rift volcanism TWO MAGMATIC PULSES DURING RODINIA RIFTING, AS ON E. LAURENTIAN MARGIN

  9. Bentonitic Layer Uppermost Marathon Fm (L. Ordovician)U/Pb, LA-ICPMS – zircon (Stockli, UT-Austin) 207Pb/206Pb ages:1400-1350 Ma – Granite-Rhyolite Province 1100 Ma – Grenvillian basement 780-750 Ma – Cryogenian rift volcanism 580-520 Ma – Eocambrian rift volcanism

  10. Solitario - Dagger Flat Ss (U. Cambrian) U/Pb, LA-ICPMS - zircon (Stockli, Rodríguez, UT-Austin) Gr. Size: 149.83 x 269.34 μm O Quartz arenite to litharenite Thin- to medium-bedded Channels, cross beds, sole marks Minor Granite-Rhyolite Province (1350-1301 Ma) Mainly Grenvillian (1281-1002; * few 1230 Ma) * Very few 988-809 Ma * Rare Cryogenian (798-657 Ma) * No Eocambrian *cf. Marathon clast & Devils River Uplift core data

  11. Devils River UpliftNeoproterozoic & Eocambrian Magmatism Prior to analyses of Marathon clasts, DRUprovided sole evidence for co-located Neoproterozoic and Eocambrian magmatism in region Rb/Sr, whole-rock age determinations on exploration well cores: 711 ± 23 Ma – metarhyolites 524 ± 32 Ma and 529 ± 31 Ma – metavolcanics within metasediments (Denison in Nicholas and Rozendal, 1975)

  12. Shell No. 1 Stewart Well Core – Lithostratigraphy & Geochronological Samples (Rodríquez et al., 2017)

  13. Mesoproterozoic Felsic Orthogneisses 1230 ± 5 Ma Correlative with youngest granite orthogneisses of Valley Spring Domain, Llano Uplift

  14. Mesoproterozoic Metarhyolite 1230 ± 4 Ma Coeval with orthogneisses PC – C contact revised upward () − − - 

  15. L-M Cambrian Metasediments/Metavolcanics A Dominantly Grenvillian (1082 Ma) Strong peak at 1233 Ma No Cryogenian (700’s) Distinct Eocambrian (533 Ma) B Grenvillian (1000-1080 Ma) Minor peak at 1225 Ma Dominantly Cryogenian (676 Ma) Distinct Eocambrian (530 Ma) Neoarchean (2622 Ma)

  16. Upper Cambrian Sandstone Granite-Rhyolite Province (1500-1300 Ma) Grenville predominates (1275-1094 Ma) No 1230 Ma from metaigneous basement Cryogenian magmatism (700-682 Ma) Eocambrian magmatism (580-560 Ma)

  17. Eastern Laurentia Two-Stage Rodinia Rifting – Representative Examples NEWFOUNDLAND (Cawood et al., 2001) 760 – 700 Ma felsic volcanics, dike swarms 570 – 535 Ma bimodal, basalt and rhyolite ADIRONDACKS (Cawood et al., 2001; Burton and Southworth, 2010) 760 - 680 Ma felsic rocks of massif 620 - 580 Ma mafic dikes CENTRAL & SOUTHERN APPALACHIANS (McCausland et al., 2011) 750 Ma dominantly felsic 615 – 590 Ma tholeiites to alkaline basalts APPALACHIANS, BLUE RIDGE (Southworth et al, 2009; Tollo et al. 2012) 760 – 680 Ma felsic volcanics and plutons 565 Ma dominantly mafic N. CAROLINA, GRANDFATHER MT. (Burton and Southworth, 2010) 760 – 700 Ma felsic volcanics 600 – 550 Ma basalt and rhyolite

  18. Opening of Iapetus – Cryogenian & Eocambrian Rifting of S. Laurentian Margin EASTERN Laurentian margin – two rift pulses at ~760 to ~700 Ma and ~570 to ~530 Ma Intraplate extension/rift geo- chemical signature for 706 Ma volcanic boulders in L-M Ordo- vician strata of Marathon Basin SOUTHERN Laurentian margin – our new zircon U/Pb data further document both Neoproterozoic and Eocambrian rift magmatism (Cawood et al., 2007)

  19. Conjugate Block – Laurentian Cuyania Terrane, W. Argentina W Pr P (Naipauer et al., 2010)

  20. The Shared Laurentian History (Dickerson, 2012) Cuyania W. Ouachita Granite-Rhyolite Province magmatism (1500-1300 Ma) Grenvillian igneous & metamorphic basement rocks (1230-1004 Ma) Grenvillian ultramafic complexes (1090-1070 Ma) Cryogenian-Eocambrian intraplate rift magmatism (~750 & ~520 Ma) Cambrian – Mid-Ordovician Laurentian shelf/offshelf fauna Cambrian – Mid-Ordovician lithostratigraphy, correlative hiatuses Mid-Ordovician (Floian-Darriwilian) pyroclastics & olistostromes Paleomagnetically adjacent at ~26ºS through M. Ordovician

  21. S. Laurentian Pre-Rift and Rift Chronostratigraphy (U/Pb, zircon)

  22. Laurentian Chronostratigraphy, continued U/Pb DATA SOURCES

  23. Parting of the ways… Amalgamation of Cuyania with West Gondwana was complete by 450 Ma (Katian)

  24. References Casquet, C., Rapela, C., Pankhurst, R., Galindo, C., Dahlquist, J., Baldo, E.G., Saavedra, J., Gonzalez Casado, J., Fanning, C. M.,2004, Grenvillian massif-type anorthosites in the Sierras Pampeanas (Argentina): Journal of the Geological Society (London), v. 162, p. 9-12. Cawood, P. A., Nemchin, A. A., Strachan, R., Prave, T. and Krabbendam, M., 2007, Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia: Journal of the Geological Society (London), v. 164, p. 257-275. Dickerson, P.W., 2012, The circum-Laurentian carbonate bank, the western Ouachita-Cuyania basin, and the prodigal Llanoria landmass: American Association of Petroleum Geologists Memoir 98, p. 959–984. Dickerson, P. W., Stockli, D. F., Hanson, R. E., and Roberts, J. M., 2014, Emerging data on Rodinia rifting from Marathon orogenic belt, southern Laurentia: Geological Society of America, Abstracts with Program, v. 46, no. 6, p. 371. PPT: https://gsa.confex.com/gsa/2014AM/webprogram/Paper250007.html Escayola, M. P., van Staal, C.R., Davis, W.J.,2011, The age and tectonic setting of the Puncoviscana Formation in northwestern Argentina: an accretionary complex related to Early Cambrian closure of the Puncoviscana Ocean and accretion of the Arequipa–Antofalla block: Journal of South American Earth Sciences, v. 32, p. 438–459. http://dx.doi.org/10.1016/j.jsames.2011.04.013. Goetz, L. K., and P. W. Dickerson, 1985, A Paleozoic transform margin in Arizona, New Mexico, west Texas, and Mexico, in P. W. Dickerson and W. R. Muehlberger, eds., Structure and tectonics of Trans-Pecos Texas: West Texas Geological Society Publication 85-81, p. 173–184. Hanson, R. E., Roberts, J. M., Dickerson, P. W. and Fanning, C. M., 2016, Cryogenian intraplate magmatism along the buried southern Laurentian margin: Evidence from volcanic clasts in Ordovician strata, Marathon uplift, west Texas: Geology, v. 44, no. 7, p. 539-542. doi:10.1130/G37889.1

  25. Naipauer, M., Vujovich, G. I., Cingolani, C. A. and McClelland, W. C., 2010, Detrital zircon analysis from the Neoproterozoic–Cambrian sedimentary cover (Cuyania terrane), Sierra Pie de Palo, Argentina: Evidence of a rift and passive margin system?: Journal of South American Earth Sciences, v. 30, p. 84–96. doi:10.1016/j.jsames.2009.10.001. Nicholas, R. L., and Rozendal, R. A., 1975, Subsurface positive elements within Ouachita fold belt in Texas and their relation to Paleozoic cratonic margin: AAPG Bulletin, v. 59, p. 193–216. Rapela, C. W., Verdecchia, S. O., Casquet, C., Pankhurst, R. J., Baldo, E. G., Galindo, C., Murra, J. A., Dahlquist, J. A. and Fanning, C. M.,2016, Identifying Laurentian and SW Gondwana sources in the Neoproterozoic to Early Paleozoic metasedimentary rocks of the Sierras Pampeanas:Paleogeographic and tectonic implications: Gondwana Research, v. 32, p. 193-212. Reese, J. F., Mosher, S., Connelly, J., and Roback, R., 2007, Mesoproterozoic chronostratigraphy of the southeastern Llano uplift, central Texas: Geological Society of America Bulletin, v. 112, no. 2, p. 278-291. doi:10.1130/0016-7606(2000)112<278:MCOTSL>2.0.CO;2 Roberts, J. M., Hanson, R. E., Dickerson, P. W. and Fanning, C. M., 2010, Basalt-trachyandesite-trachyte clasts within Ordovician deep-marine conglomerates in the Marathon fold-thrust belt, west Texas: Implications for anoroanorogenic magmatism along the southern Laurentian margin (abs.): Geological Society of America, Abstracts with Program, v. 42, no. 5, p. 268. Rodríguez, E., Stockli, D. F. and Dickerson, P. W., 2017, New zircon U/Pb geochronology from the Devils River Uplift – insights into the Neoproterozoic and early Paleozoic evolution of the southern margin of North America (abs): Geological Society of America, South-Central Section, Paper 1-2. PPT: https://gsa.confex.com/gsa/2017SC/webprogram/Paper289330.html Vujovich, G. I., van Staal, C. R. and Davis, W., 2004, Age constraints on the tectonic evolution and provenance of the Pie de Palo complex, Cuyania composite terrane, and the Famatinian orogeny in the Sierra Pie de Palo, San Juan, Argentina: Gondwana Research, v. 7, p. 1041–1056. doi:10.1016/S1342-937X(05)71083-2

More Related