1 / 40

Uporaba silicijevih detektorjev v medicini

Uporaba silicijevih detektorjev v medicini. >. Slikanje v medicini Mamografija Določanje razporeditve izotopov s Comptonsko kamero. V. Cindro, Institut Jo žef Stefan, Ljubljana, Slovenija. Silicijevi mikropasovni detektorji. >.

fineen
Télécharger la présentation

Uporaba silicijevih detektorjev v medicini

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Uporaba silicijevih detektorjev v medicini > Slikanje v medicini Mamografija Določanje razporeditve izotopov s Comptonsko kamero V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  2. Silicijevi mikropasovni detektorji > • mikropasovne detektorje uporabljamo v visokoenergiski fizikiza določanje sledi nabitih delcev • prvi pasovno segmentirani detektorji s površinsko zaporno plastjo leta 1980 (E. Heijne) v CERNu • uporaba predojačevalcev z veliko gostoto kanalov (20/mm) • sedaj uporabljeni pri praktično vseh eksperimentih • velikosti do 200 m2 (eksperiment CMS v CERNu) in 107 bralnih kanalov (ATLAS, CMS) V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  3. > Osnovna celica mikropasovnega detektorja je p+ - i – n+ dioda V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  4. Silicijev mikropasovni detektor: > V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  5. > • informacijo o poziciji dobimo s segmentacijo detektorjev v pasove (presledki 25 µm ali več) • 2 (3D) informacijo dobimo, če pasove na p oziroma n strani naredimo pod kotom • možno oblikovanje elektrod v obliki blazinic (pixel detektorji) V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  6. > V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  7. Povezavo med detektorjem in elektroniko naredimo z ultrazvočnim bondiranjem > V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  8. Mamografija > • slikanje dojk z rentgenskimi žarki za odkrivanja raka • najbolj primerna metoda za presejalno (screening) slikanje • redno (letno) naj bi bila izvajana pri populaciji starejši od 40-50 let • dopolnjujejo jo preostale metode (scintimamografija, PET, ultrazvok, NMR) V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  9. Rezultati študije v Veliki Britaniji (1994 -2000) > • na 1000 pregledov se odkrije 4-7 obolenj (starost 50 -70 let) • prejeta doza 2 mGy (4.5 mGy pri dvojnem slikanju) • faktor tveganja 13 – 7 povzročenih rakastih obolenj obolenj/milijon/mGy • razmerje korist/škoda je 55 – 170 V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  10. Upravičenost presejalne mamografije > • raziskava na Švedskem (populacija 210000) • umrljivost zaradi raka na prsih se zmanjšala za 45% od tega 28% zaradi presejalne mamografije • American Cancer society - presejalna mamografija priporočljiva po 40 letu (15. maj 2003) V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  11. Mamografska slika > Detektirati moramo: mikrokalcifikacije – velikost ≥ 100 µm nizkokontrastne tumorje V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  12. Tumorji :nizkokontrastni objekti > V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  13. Kaj nam ponuja slikanje s Si detektorji: > • ločljivost mora biti boljša od 100 µm • za detekcijo bolezni je pomembna predvsem kvaliteta slike • izkoristek za detekcijo fotonov je lahko blizu 100% - zmanjšanje prejete doze • zajeta slika je digitalna – linearen odziv • enostavno delo z detektorji V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  14. Absorpcijski koeficienti v Si in Ge > V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  15. Simulacija mikrokalcifikacije > • SNR = signal/šum = (N2-N1)/N1 • FOM = SNR/MGD • FOM mera koristnosti (Figure of Merit) • MGD povprečna žlezna doza (Mean Glandular Dose) V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  16. Optimizacija rentgenskega spektra za detekcijo 100 µm velike mikrokalcifikacije z metodo Monte-Carlo > Zvezni spekter Monoenergetski Š. Stres, T. Mali, M. Mikuž, V. Cindro: Phys. Med. Biol. 45 (2000) 2029 – 2041 V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  17. Meritve z detektorjem > Detektor I: CSEM, debelina 300 mikronov, 200 mikronov med pasovi Detektor II: izdelan na Fakulteti za elektrotehniko → D. Vrtačnik, D. Križaj, D. Resnik, U. Aljančič iz skupine S. Amona, debelina 220 mikronov, Izvor rentgenskih žarkov: rentgen na ZVD Ljubljana (U. Zdešar) Onkološki Inštitut – Breda Jančar T. Mali, V. Cindro, M. Mikuž: Nucl. Instr. Meth. 460 (2001) D. Vrtačnik et al: Sensors and Actuators A 85 (2000) V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  18. Slike fantoma:Mikrokalcifikacije > d= 350 µm MGD = 0.4 mGy MGD = 0.2 mGy MGD = 0.1 mGy d=350 µm d=300 µm d=270 µm d=200 µm povprečna žlezna doza ≈ 0.4 mGy V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  19. SNR v odvisnosti od povprečne žlezne doze > V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  20. Slika fantoma: nizkokontrastni objekti > 8mm: 0.24 mGy 6mm: 0.1 mGy 5 mm: 0.15 mGy kontrast 1.8 % kontrast 1.6 % kontrast 0.8 % V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  21. Karakterizacija sistema > Modulacijska prenosna funkcija Razširitvena funkcija črte (LSF) V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  22. > • uporaba silicijevih detektorjev obeta znižanje prejete doze za ≈ 5x pri mamografskih slikanjih • prvi proizvajalec na tržišču od leta 2002 V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  23. Comptonska kamera za določanjekrajevne porazdelitve sevalcev gama > • Princip delovanja predlagan leta 1966 za uporabo v astrofiziki Pinkau, White (opis metode s scintilatorji) • uporabljena 1973 (astrofizika, comptonski teleskop za  žarke, balonski eksperimenti) Schoenfelder et al. • v nuklearni medicini (Ge in Angerjeva kamera) Todd, Nightingale (1974) • Si predlagan kot primarni detektor 1988 • C-Sprint 1998 V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  24. Comptonska kamera > običajna gama kamera (Angerjeva kamera) Comptonska kamera V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  25. Comptonsko sipanje fotona na elektronu > vpadli foton sipani elektron Edep energija deponirana v sipalnem detektorju E energija vpadlega fotona sipani foton Izmerimo: točko comptonskega sipanja v sipalnem detektorju energijo comptonskega elektrona točko interakcije v absorpcijskem detektorju V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  26. > SPECT – Single Photon Emission Computed Tomography V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  27. Osnove delovanja: > • točka v sipalnemu detektorju + točka v absorpcijskemu detektorju  smer sipanega fotona • + sipalni kot (iz meritve deponirane energije v sipalnemu detektorju)  možne smeri vpadnega fotona (plašč stožca) • presečišča stožcev (iz več dogodkov)  položaj sevalca V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  28. Napaka rekonstrukcije > • pozicijska ločljivost sipalnega detektorja (granulacija in doseg elektronov) • pozicijska ločljivost absorpcijskega detektorja (omejuje jo granulacija detektorja) • energijska ločljivost sipalnega detektorja • geometrija (razdalje) V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  29. Ločljivost meritve energije comptonskega elektrona v siliciju: > • zaporni tok detektorja (≈ 100 e-) • šum elektronike (≈ 100 e-) Meritev energije je omejena z: napaka na merjenem kotu • Dopplerjeva razširitev – zaradi sipanja na vezanih elektronih z v  0 V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  30. Vpliv ločljivosti detektorja na napako meritve kota > V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  31. Rezultati simulacije: > • Izkoristek nekaj 100x večji kot pri Angerjevi kameri • Rekonstrukcija zahteva večje število zaznanih fotonov (decoding penalty) • raste z velikostjo slikanega predmeta • pada z izboljšano energijsko ločljivostjo • pada z energijo vpadnega fotona - 99mTc, ΔE = 750 eV, ≈ 40 - 99mTc, ΔE = 0 eV, ≈ 20 - 131I, ΔE = 750 eV, ≈ 1 • pričakujemo opazno izboljšanje glede na Angerjevo kamero V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  32. Bralna elektronika: > • nizek šum • samostojno proženje • hitrost Čip VATA32C = CMOS, 32 kanalov Izdeluje IDE AS Norveška A. Studen et al. NIM A 501 (2003) V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  33. C- SPRINT (Ann Arbor) sistem > absorpcijski detektor sipalni detektor V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  34. > V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  35. Dosedanji rezultati: > Rezultati skupine iz Michigana: • primerjava s simulacijo: zadovoljivo ujemanje izkoristka in dobro ujemanje prostorske ločljivosti slike 99mTc točkovnega izvora velikost slike 10x10cm2 FWHM ≈ 1.4cm C-SPRINT ANGER V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  36. > Izvor 99mTc Anger (40000 zadetkov) C-SPRINT (1500 zadetkov) V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  37. Zaključek (Comptonska kamera): > • Comptonova kamera ponuja možnost za znatne izboljšave slikanja v nuklearni medicini • izdelava konkurenčnega sistema je resen tehnološki izziv • Trenutni načrti usmerjeni v specializirano aplikacijo sonda za prostato V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  38. > Ljubljana: A. Studen, D. Žontar, M. Mikuž, V. Cindro V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  39. Proba za preiskavo prostate: > • izboljša ločljivost za 4-5 x (na 2-3 mm FWHM) • učinkovitost za 16-40 x V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

  40. Zaključek (Si detektorji): > Si detektorji so dovolj zanimivi za medicinske aplikacije Sistem za rentgensko slikanje je že na tržišču Comptonska kamera v fazi izdelave prototipa kliničnega aparata za slikanje prostate. V. Cindro, Institut Jožef Stefan, Ljubljana, Slovenija

More Related