1 / 27

Lecture II

Lecture II. Lecture II: • Linear circuit theory review • Amplifier basics • MOS small signal model. R 2. R 4. I s. R 1. V s. R 3. Nodal analysis. Nodal analysis provides a systematic and reliable method to calculate all voltages and currents in a linear circuit. Nodal analysis.

floyd
Télécharger la présentation

Lecture II

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture II Lecture II: • Linear circuit theory review • Amplifier basics • MOS small signal model A. Rivetti – INFN Sezione di Torino

  2. R2 R4 Is R1 Vs R3 Nodal analysis Nodal analysis provides a systematic and reliable method to calculate all voltages and currents in a linear circuit A. Rivetti – INFN Sezione di Torino Nodal analysis

  3. v1 v2 Is R1 Vs R3 Writing nodal equations R2 R4 A. Rivetti – INFN Sezione di Torino Nodal analysis

  4. R2 R4 v1 v2 Is R1 Vs R3 Writing the circuit matrix A. Rivetti – INFN Sezione di Torino Nodal analysis

  5. Solving the circuit matrix A. Rivetti – INFN Sezione di Torino Nodal analysis

  6. Vs R2 Is R1 R4 R3 Another example A. Rivetti – INFN Sezione di Torino Nodal analysis

  7. Lecture II Lecture II: • Linear circuit theory review • Amplifier basics • MOS small signal model A. Rivetti – INFN Sezione di Torino

  8. Amplifier characteristic • The input-output characteristic of an amplifier is usually a non-linear • function • Over some interval of the input signal, this function can be • approximated by a polynomial: • For narrow range of the input signal, we may write: • The above expression does not obey the superposition principle A. Rivetti – INFN Sezione di Torino Amplifier basics

  9. Small signal model • If a0 does not depend on the signal, we can write: • This is an expression that obeys the superposition principle • The small signal model takes into account only variations of signals within a circuit • The small signal equivalent circuit can be studied with the methods of linear circuit analysis A. Rivetti – INFN Sezione di Torino Amplifier basics

  10. Rs Vout Vi(t) Ri Vs(t) Voltage amplifier • AV = Vout/Vi • Input impedance high (ideally infinite) • Output impedance small (ideally zero) A. Rivetti – INFN Sezione di Torino Amplifier basics

  11. RS RO Vi(t) RI Vout AVVi RL Vs(t) VA small signal model • Note: impedances may also be complex A. Rivetti – INFN Sezione di Torino Amplifier basics

  12. Current amplifier Iout Rs Ii(t) Ri Is(t) • AV = Iout/Ii • Input impedance small (ideally zero) • Output impedance high (ideally infinite) A. Rivetti – INFN Sezione di Torino Amplifier basics

  13. Rs Ro Ii(t) Ri Iout(t) RL Is(t) Is(t) CA small signal model • Note: impedances may also be complex A. Rivetti – INFN Sezione di Torino Amplifier basics

  14. Rs Iout Vi(t) Ri Vs(t) Transconductance amplifier • AV = Iout/Vi • Input impedance high (ideally infinite) • Output impedance high (ideally infinite) • Important: the gain is not a number A. Rivetti – INFN Sezione di Torino Amplifier basics

  15. RS Ro Is(t) RL Vi(t) RI Iout(t) Vs(t) TCA small signal model • Note: impedances may also be complex A. Rivetti – INFN Sezione di Torino Amplifier basics

  16. Vout Rs Is(t) Ii(t) Ri Transimpedance amplifier • AV = Vout/Ii • Input impedance small (ideally zero) • Output impedance small (ideally zero) • Note: Gain is not a number A. Rivetti – INFN Sezione di Torino Amplifier basics

  17. Rs Ii(t) Ri Is(t) RO Vout AVVi RL TA small signal model • Note: impedances may also be complex A. Rivetti – INFN Sezione di Torino Amplifier basics

  18. Lecture II Lecture II: • Linear circuit theory review • Amplifier basics • MOS small signal model A. Rivetti – INFN Sezione di Torino

  19. Vs(t) gmVs Vs(t) DIDS W mn COX W mn (VGS – VTH) gm = = = COX 2 IDS DVGS L L Simplified small signal DC model The MOS transistor in saturation can be seen as a voltage controlled current source RS A. Rivetti – INFN Sezione di Torino MOS small signal DC model

  20. Vdrain Vgate Vs Practical example What is the equivalent small signal model of this? W=100 mm L=10 mm mnCOX=190 mA/V2 VTH=0.6 V Vdrain=2.5 V Vgate=1.25 V A. Rivetti – INFN Sezione di Torino MOS small signal DC model

  21. Gm simulation(1) 356.7 current (mA) 355.7 0 1 2 time (mS) Vs=1mV pk-pk A. Rivetti – INFN Sezione di Torino MOS small signal DC model

  22. Gm simulation (2) 660 current (mA) 355 0 1 2 time (mS) Vs=250mV pk-pk A. Rivetti – INFN Sezione di Torino MOS small signal DC model

  23. Vdrain r0 Vgate Vs Output impedance A. Rivetti – INFN Sezione di Torino MOS small signal DC model

  24. ro Vs(t) gmVs Vs(t) DIDS W mn COX W mn (VGS – VTH) gm = = = COX 2 IDS DVGS L L 1 ro = lIDS Including the output impedance The MOS transistor in saturation can be seen as a voltage controlled current source with finite output impedance RS A. Rivetti – INFN Sezione di Torino MOS small signal DC model

  25. Vs(t) DIDS DVTH W mn COX (VGS – VTH) gmb = = = DVBS L DVSB g gm 2fF+ VSB Bulk transconductance For a more accurate model, the bulk effect must also be taken into account RS ro gmbvbs Vs(t) gmVs A. Rivetti – INFN Sezione di Torino MOS small signal DC model

  26. Vs(t) Small signal DC model The saturated MOS transistor is a voltage controlled current source with finite output impedance RS ro Vs(t) gmVs gmbvbs gm models the gate transconductance gmb models the bulk transconductance (the bulk effect) A. Rivetti – INFN Sezione di Torino MOS small signal DC model

  27. DIDS W mn gm = = COX 2 IDS DVGS L 1 ro = lIDS Some numbers… IDS = 100mA, W/L=50, mnCOX=190mA/V2 l=0.01V-1 gm = 1mS ro = 1MW A. Rivetti – INFN Sezione di Torino MOS small signal DC model

More Related