1 / 56

Non-Standard Neutrino Interactions

Non-Standard Neutrino Interactions. Enrique Fernández-Martínez. Heavy Quarks and Leptons 2010, INFN Frascati 11-15 October. Introduction : NSI. Generic new physics affecting n oscillations can be parameterized as 4-fermion N on- S tandard I nteractions:.

Télécharger la présentation

Non-Standard Neutrino Interactions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Non-Standard Neutrino Interactions Enrique Fernández-Martínez Heavy Quarks and Leptons 2010, INFN Frascati 11-15 October

  2. Introduction: NSI Generic new physics affecting n oscillations can be parameterized as 4-fermion Non-Standard Interactions: Production or detection of a nbassociated to a la So that n +nb→p+la p → m +nb Y. Grossman hep-ph/9507344

  3. Directboundsonprod/detNSI bounds order ~10-2 C. Biggio, M. Blennow and EFM 0907.0097

  4. Introduction: NSI Non-Standard n scattering off matter can also be parameterized as 4-fermion Non-Standard Interactions: so that na→nbin matterf = e, u, d

  5. DirectboundsonmatterNSI If matter NSI are uncorrelated to production and detection direct bounds are mainly from n scattering off e and nuclei Rather weak bounds… …can they be saturated avoiding additional constraints? S. Davidson, C. Peña garay, N. Rius and A. Santamariahep-ph/0302093 J. Barranco, O. G. Miranda, C. A. Moura and J. W. F. Valle hep-ph/0512195 J. Barranco, O. G. Miranda, C. A. Moura and J. W. F. Valle 0711.0698 C. Biggio, M. Blennow and EFM 0902.0607

  6. MINOS and LSND/MiniBooNEviaNSI Can be accommodated with matter NSI emt~0.4 or detection NSI emt~ 0.1 W. A. Mann et al 1006.5720 J. Kopp et al 1009.0014 Tension between MINOSnuandantinudata P. Vahle @ Neutrino 2010

  7. MINOS and LSND/MiniBooNEvia NSI Can be accommodated with production/detection NSI + sterile neutrinos eem~0.01 E. Akhmedov and T. Schwetz1007.4171 Agreement between MiniBooNEand LSNDantinudata R. Van de Water @ Neutrino 2010

  8. Gauge invariance However is related to by gauge invariance and very strong bounds exist • → e g • m→ e in nuclei • t decays S. Bergmann et al. hep-ph/0004049 Z. Berezhiani and A. Rossihep-ph/0111147 S. Antusch, M. Blennow, EFM and T. Ota, 1005.0756

  9. LargeNSI? • We search for gauge invariant SM extensions satisfying: • Matter NSI are generated at tree level • 4-charged fermionops not generated at the same level • No cancellations between diagrams with different messenger particles to avoid constraints • The Higgs Mechanism is responsible for EWSB S. Antusch, J. Baumann and EFM 0807.1003 B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451

  10. LargeNSI? At d=6 only one direct possibility: charged scalar singlet Present in Zee model or R-parity violating SUSY M. Bilenky and A. Santamariahep-ph/9310302

  11. LargeNSI? Since lab= -lbaonly emm, emtand ett≠0 Very constrained: • m → e g • m decays • decays • CKM unitarity F. Cuypers and S. Davidsonhep-ph/9310302 S. Antusch, J. Baumann and EFM 0807.1003

  12. LargeNSI? Without avoiding 4-charged fermionops at the same level there is no direct way at d=6 to induce quark NSI Constraints from gauge invariance at d=6 on flavour changing NSI very strong: But pseudoscalar operators have chiral enhancement in pion decay → production NSI ~ 0.01 in pion decay S. Antusch, M. Blennow, EFM and T. Ota, 1005.0756

  13. MINSIS Main Injector Non Standard Interactions Search OPERA-like detector at MINOS near detector site to search for ntappearance in the NuMI beam at 1 km baseline Could reach sensitivities ~10-6→ test production/detectionNSI mixing the m and t sectors down to 10-3

  14. SSB SSB LargeNSI? At d=6 indirect way: fermionsinglets A. Broncano, M. B. Gavela and E. Jenkins hep-ph/0210192

  15. EffectiveLagrangian

  16. Effective Lagrangian Diagonal mass and canonical kinetic terms

  17. Effective Lagrangian Diagonal mass and canonical kinetic terms N is not unitary

  18. ni Z W ni nj la g W la ni lb (NN†) from decays • W decays Info on (NN†)aa • Invisible Z • Universality tests Info on(NN†)ab • Rare leptons decays Afterintegratingout W and Z neutrino NSI induced

  19. Experimentally (NN†)fromdecays E. Nardi, E. Roulet and D. Tommasini hep-ph/9503228 D. Tommasini, G. Barenboim, J. Bernabeu and C. Jarlskog hep-ph/9503228 S. Antusch, C. Biggio, EFM, B. Gavela and J. López Pavón hep-ph/0607020 S. Antusch, J. Baumann and EFM 0807.1003

  20. Non-Unitarity at a nFactory Golden channel at nFactory is sensitive to ete nm disappearance channel linearly sensitive to etm through matter effects Near t detectors can improve the bounds on eteand etm Combination of near and far detectors sensitive to the new CP phases S. Antusch, M. Blennow, EFM and J. López-pavón 0903.3986 SeealsoEFM, B. Gavela, J. López Pavón and O. Yasudahep-ph/0703098; S. Goswami and T. Ota 0802.1434; G. Altarelli and D. Meloni 0809.1041,….

  21. LargeNSI? At d=8 more freedom Can add 2 H to break the symmetry between n and l with the vev There are 3 topologies to induce effective d=8 ops with HHLLfflegs: -v2/2 Z. Berezhiani and A. Rossihep-ph/0111147; S. Davidson et al hep-ph/0302093

  22. LargeNSI? We found three classes satisfying the requirements:

  23. LargeNSI? We found three classes satisfying the requirements: Just contributes to the scalar propagator after EWSB Same as the d=6 realization with the scalar singlet 1 v2/2

  24. LargeNSI? We found three classes satisfying the requirements: The Higgs coupled to the NR selects n after EWSB 2 -v2/2 Z. Berezhiani and A. Rossihep-ph/0111147 S. Davidson et al hep-ph/0302093

  25. LargeNSI? But can be related to non-unitarity and constrained 2

  26. LargeNSI? For the matter NSI Where is the largest eigenvalue of And additional source, detector and matter NSI are generated through non-unitarityby the d=6 op

  27. LargeNSI? We found three classes satisfying the requirements: Mixed case, Higgs selects one n and scalar singlet S the other 3

  28. LargeNSI? Can be related to non-unitarity and the d=6antisymmetric op 3

  29. LargeNSI? At d=8 we found no new ways of selecting n The d=6 constraints on non-unitarity and the scalar singlet apply also to the d=8 realizations What if we allow for cancellations among diagrams? B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451

  30. LargeNSI? B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451

  31. LargeNSI? boldmeans induces 4-charged fermion at d=6, haveto cancel it!! tickmeansselectsn at d=8 without 4-charged fermion B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451

  32. LargeNSI? There is always a 4 charged fermion op that needs canceling Toy model Cancellingthe4-charged fermionops. B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451

  33. Conclusions • Models leading “naturally” to NSI imply: • O(10-3) bounds on the NSI • Relationsbetweenmatter and production/detectionNSI • ProbingO(10-3) NSI at future facilities very challenging but not impossible, near detectors excellent probes • Saturating the mild model-independent bounds on matter NSI and decoupling them fromproduction/detectionrequiresstrong fine tuning

  34. LargeNSI? General basis for d=8 ops. with two fermions and two H 2 left + 2 right 4 left Z. Berezhiani and A. Rossihep-ph/0111147 B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451

  35. LargeNSI? To cancel the 4-charged fermion ops: but and NR scalarsinglet NR NR after a Fierztransformation

  36. DirectboundsonmatterNSI If matter NSI are uncorrelated to production and detection direct bounds are mainly from n scattering off e and nuclei 0.33 0.33 Rather weak bounds… …can they be saturated avoiding additional constraints? S. Davidson, C. Peña garay, N. Rius and A. Santamariahep-ph/0302093 J. Barranco, O. G. Miranda, C. A. Moura and J. W. F. Valle hep-ph/0512195 J. Barranco, O. G. Miranda, C. A. Moura and J. W. F. Valle 0711.0698 C. Biggio, M. Blennow and EFM 0902.0607

  37. NSI in loops This loop has to be added to: Used to set loop bounds on eemthrough the log divergence However the log cancels when adding the diagrams… + C. Biggio, M. Blennow and EFM 0902.0607

  38. Measuring unitarity deviations In Pmt there is no or suppression The CP phasedmt can be measured EFM, B. Gavela, J. López Pavón and O. Yasuda hep-ph/0703098 See also S. Goswami and T. Ota 0802.1434

  39. Measuringunitaritydeviations The CP asymmetry in the em channel cannot be far from the SM But it can be very different for the etor mtchannels Consistency check! G. Altarelli and D. Meloni 0809.1041

  40. Source of NSI Neutrino masses already imply physics beyond the SM… … extensions to accommodate neutrino masses can naturally lead to NSI

  41. SSB SSB The Type I Seesaw Model The SM is extended by: Iftheright-handed neutrino NRis heavy it can beintegratedout: Weinberg 1979 A. Broncano, M. B. Gavela and E. Jenkins hep-ph/0210192

  42. EffectiveLagrangian

  43. Effective Lagrangian Diagonal mass and canonical kinetic terms

  44. Effective Lagrangian Diagonal mass and canonical kinetic terms N is not unitary

  45. Non-unitarity and NSI The general matrix N can be parameterized as: where So that with And production/detectionNSI: Alsogave

  46. Non-unitarity and NSImattereffects Integrating out the W and Z, 4-fermion operators for matter NSI are obtained from non-unitary mixing matrix They are related to the production and detection NSI

  47. ni Z W ni nj la g W la ni lb (NN†) from decays • W decays Info on (NN†)aa • Invisible Z • Universality tests Info on(NN†)ab • Rare leptons decays Afterintegratingout W and Z neutrino NSI induced

  48. Experimentally (NN†)fromdecays E. Nardi, E. Roulet and D. Tommasini hep-ph/9503228 D. Tommasini, G. Barenboim, J. Bernabeu and C. Jarlskog hep-ph/9503228 S. Antusch, C. Biggio, EFM, B. Gavela and J. López Pavón hep-ph/0607020 S. Antusch, J. Baumann and EFM 0807.1003

  49. Non-Unitarity at a NF Golden channel at NF is sensitive to ete nm disappearance channel linearly sensitive to etm through matter effects Near t detectors can improve the bounds on eteand etm Combination of near and far detectors sensitive to the new CP phases S. Antusch, M. Blennow, EFM and J. López-pavón 0903.3986 SeealsoEFM, B. Gavela, J. López Pavón and O. Yasudahep-ph/0703098; S. Goswami and T. Ota 0802.1434; G. Altarelli and D. Meloni 0809.1041,….

  50. Type I seesaw Minkowski, Gell-Mann, Ramond, Slansky, Yanagida, Glashow, Mohapatra, Senjanovic, … NRfermionicsinglet Type III seesaw Foot, Lew, He, Joshi, Ma, Roy, Hambye et al., Bajc et al., Dorsner, Fileviez-Perez SRfermionictriplet Othermodelsfornmasses Type II seesaw Magg, Wetterich, Lazarides, Shafi, Mohapatra, Senjanovic, Schecter, Valle, … Dscalartriplet

More Related