1 / 60

PPT 108 PHYSICAL CHEMISTRY

PPT 108 PHYSICAL CHEMISTRY. Semester 2 Academic session 2011/2012. NURUL AIN HARMIZA ABDULLAH. CHAPTER 2 FIRST LAW OF THERMODYNAMICS. THERMODYNAMIC SYSTEM. Characterized by the 4 laws of thermodynamics. CHAPTER 2 First law of thermodynamics. Key Concepts. Work

freja
Télécharger la présentation

PPT 108 PHYSICAL CHEMISTRY

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PPT 108 PHYSICAL CHEMISTRY Semester 2 Academic session 2011/2012 NURUL AIN HARMIZA ABDULLAH

  2. CHAPTER 2FIRST LAW OF THERMODYNAMICS

  3. THERMODYNAMIC SYSTEM Characterized by the 4 laws of thermodynamics

  4. CHAPTER 2First law of thermodynamics

  5. Key Concepts • Work • Pressure-Volume Work (P-V Work) • Heat • First Law of Thermodynamics • Enthalpy • Perfect Gas • Molecular Nature of Internal Energy

  6. WORK Work (w) is defined as the force (F) that produces the movement of an object through a distance (d): Work is done when and object, e.g. a system's wall, moves against an opposing force. This is equivalent to an ordered motion done by the system on the surroundings or vice versa. Work = force ×distance w = F x d Work also has units of J, kJ, cal, kcal, Cal, etc.

  7. Pressure-volume work • The example of PV work – in the cylinder of an automobile engine • The combustion of the gasoline causes gases within the cylinder to expand, pushing the piston outward and ultimately moving the wheel of the car. The relationship between a volume change (ΔV) and work (w): • W= -P ΔV • Where P is external pressure • The units of PV work are L·atm; 1 L·atm = 101.3 J. • If the gas expands, ΔV is positive, and the work term will have a negative sign (work energy is leaving the system). • If the gas contracts, ΔV is negative, and the work term will have a positive sign (work energy is entering the system). • If there is no change in volume, ΔV = 0, and there is no work done. (This occurs in reactions in which there is no change in the number of moles of gas.)

  8. Pressure-volume (P-V) work The work done in a volume change is called P-V work By removing weights and decreasing the pressure and allowing the volume to adjust according to Boyle's law with no heat addition By holding the pressure constant and increasing the volume by heating the gas using Charle’s law Changing the volume by 2 ways OR Initial state Final state Final state

  9. Work done by gas The units of PV work are L·atm; 1 L·atm = 101.3 J. if ΔV < 0, then W > 0.; increases in volume means work done BY the system on the environment. if ΔV > 0, then W < 0.; decreases in volume means work done by the environment ON the system.

  10. Work and heat are not state functions On a graph of pressure versus volume, the work is the area under the curve that describes how the state is changed from State 1 to State 2. A curved black line from State 1 to State 2 represents a change brought about by removing weights and decreasing the pressure and allowing the volume to adjust according to either Boyle’s law (the line is curved and the amount of work done on the gas is shown by the red shaded area below this curve) or Charle’s law (the resulting change in state proceeds from State 1 to an intermediate State "a" on the graph by heating. State "a" is at the same pressure as State 1, but at a different volume. If we then remove the weights, holding a constant volume, we proceed on to State 2. The work done in this process is shown by the yellow shaded area).

  11. Using either process we change the state of the gas from State 1 to State 2. But the work for the constant pressure process is greater than the work for the curved line process. The work done by a gas not only depends on the initial and final states of the gas but also on the process used to change the state. Different processes can produce the same state, but produce different amounts of work. Notice that not only does the work done by the gas depend on the process, but also the heat transferred to the gas. In the first process, the curved line from State 1 to State2, no heat was transferred to the gas; the process was adiabatic. But in the second process, the straight line from State 1 to State "a" and then to State 2, heat was transferred to the gas during the constant pressure process.  The heat transferred to a gas not only depends on the initial and final states of the gas but also on the process used to change the state.

  12. Why energy is a state function but heat and work are not? State Function is a thermodynamic parameter whose value does not depend on the thermodynamic process...It depends only on the initial and final states. State functions are characterized by the idea that no matter what path you take to get from point A to point B, the difference between B and A remains the same. An example of how this works can be illustrated using gravitational potential energy. Say you lift a box 5 meters vertically straight up into the air from the surface of the ground (which we shall set to a height of 0 m). You increase its energy by an amount mg   h where    h = 5m. Now say that you lift a box from the ground level up 1 meter above the ground, walk to the right 5 meters, lift the box 1 more meter, walk to the left 2 meters, raise the box 7 meters, walk to the left 1 more meter, and lower the box 4 meters. How much did the gravitational potential energy change? The same amount as before, mg   h where   h = 5m, because the box is still only 5 meters above where it started in either case and the potential energy depends only on the final height minus the initial height (it depends only on the final and initial position).In contrast, you expended a lot more energy (more work) moving the box around than you did just standing in place and lifting it straight up. So the work you did is NOT a state function. This function depends on the path. When you lifted the box straight up you did less work than your body did lugging the box around left and right while lifting it up and down. So the potential energy is a state function, but the work you did is a path function.Now in thermodynamics you usually apply these ideas to the 1st law or conservation of energy:U = Q + WIn this example, Q and W are path functions...the exact amount of work you do or the heat transferred to the system depend on how you add the heat or do the work (these individual values will vary depending on whether or not you did these things in either a direct or roundabout way). However, if you add these two path functions together the overall result, U, is a state function. It only depends on U (final) – U (initial) , regardless of whether or not you did direct or roundabout Q's and W's.

  13. What are Reversible and Irreversible Processes? • There are two main types of thermodynamic processes: the reversible and irreversible. The reversible process is the ideal process which never occurs, while the irreversible process is the natural process that is commonly found in the nature. Therefore: • The reversible process is an idealization. • All real processes on Earth are irreversible. P-V Work REVERSIBLE IRREVERSIBLE A reversible process is one that can be halted at any stage and reversed. In a reversible process, the system is at equilibrium at every stage of the process. An irreversible process is one where it cannot be halted at any stage and reversed and the system is not always at equilibrium at every stage of the process.

  14. What is a Reversible Process? The process in which the system and surroundings can be restored to the initial state from the final state without producing any changes in the thermodynamics properties of the universe is called a reversible process. In the figure below, let us suppose that the system has undergone a change from state A to state B. If the system can be restored from state B to state A, and there is no change in the universe, then the process is said to be a reversible process. The reversible process can be reversed completely and there is no trace left to show that the system had undergone thermodynamic change. For the system to undergo reversible change, it should occur infinitely slowly due to infinitesimal gradient. During reversible process, all the changes in state that occur in the system are in thermodynamic equilibrium with each other. Thus there are two important conditions for the reversible process to occur. Firstly, the process should occur in infinitesimally small time and secondly all of the initial and final state of the system should be in equilibrium with each other. If during the reversible process the heat content of the system remains constant, i.e. it is adiabatic process, then the process is also isentropic process, i.e. the entropy of the system remains constant. The phenomenon of undergoing reversible change is also called reversibility. In actual practice the reversible process never occurs, thus it is an ideal or hypothetical process.

  15. What is an Irreversible Process? The irreversible process is also called the natural process because all the processes occurring in nature are irreversible processes. The natural process occurs due to the finite gradient between the two states of the system. For instance, heat flow between two bodies occurs due to the temperature gradient between the two bodies; this is in fact the natural flow of heat. Similarly, water flows from high level to low level, current moves from high potential to low potential, etc. Here are some important points about the irreversible process: In the irreversible process the initial state of the system and surroundings cannot be restored from the final state. During the irreversible process the various states of the system on the path of change from initial state to final state are not in equilibrium with each other. During the irreversible process the entropy of the system increases decisively and it cannot be reduced back to its initial value. The phenomenon of a system undergoing irreversible process is called as irreversibility.

  16. or Gas confined in a cylinder by means of a moveable piston The cylinder of an automobile engine Are these examples of reversible of irreversible process?

  17. Calculation of PV work for reversible and irreversible processes A reversible process is one that can be halted at any stage and reversed. In a reversible process the system is at equilibrium at every stage of the process. An irreversible process is one where these conditions are not fulfilled. If pressure has changed continuously then the work is reversible: If the work done irreversibly by changing pressure to Pfinalwhen for the work we have: The work done by a reversible process represents the maximal work that the system can perform changing between the same original and final states.

  18. Example for P-V WORK Inflating balloon requires the inflator to do pressure-work on the surroundings. If balloons is inflated from a volume of 0.100L to 1.85L against an external pressure of 1.00 atm, how much work is done (in joules)? Answer: ΔV = V1 -V2 = 1.85L -0.100L = 1.75L W= -P ΔV = -1.00 atm x 1.75L = -1.75L.atm Convert to Joule: -1.75L.atm x 101.3 J= -177 J 1L.atm The work is negative because it is being done by the system as its volume increases due to the expansion of the gas into the much bigger volume.

  19. Study Example 2.2 page 44 Find the work for processes (a) and (b) of Fig. 2.3 if P1 3.00 atm, V1 500 cm3, P2 1.00 atm, and V2 2000 cm3. Figure 2.3 The work w done on the system in a reversible process (the heavy lines) equals minus the shaded area under the P-versus-V curve. The work depends on the process used to go from state 1 to state 2. Use this equation: Simple as the previous example. Processes (a) and (b) are expansions. Hence the system does positive work on its surroundings, and the work w done on the system is negative in these processes. Answer: = - 152 J and = -456 J

  20. HEAT • Heat is a exchange of thermal energy between a system and its surroundings caused by temperature difference. • Notice the distinction between heat and temperature. Temperature is a measure of the thermal energy of a sample matter. Heat is transfer of the thermal energy. • Heat may be defined as energy in transit from a high temperature object to a lower temperature object. • Anytime two substances with different temperatures come in contact with each other, there is an energy transfer. One substance loses heat energy and the other substance gains heat energy. • Heat energy flows from a hotter substance to a colder substance.

  21. For example, if the ice cube in the diagram is placed in the container of water, there is an energy transfer. The hotter substance loses heat energy and the colder substance gains heat energy. The water and its container lose heat energy and become cooler. The ice cube gains heat energy and becomes warmer (this causes the ice cube to melt). According to the law of energy conservation the total heat energy lost by the water and its container is equal to the total heat energy gained by the ice. Heat can be transferred reversibly or irreversibly. A reversible transfer of heat requires that the temperature difference between the two bodies be infinitesimal. When there is a finite temperature difference between the bodies, the heat flow is irreversible.

  22. Heat capacity when system absorbs heat (q) its temperature changes by ΔT: Experimental measurements demonstrate that the heat absorbed by a system and its corresponding temperature change are directly proportional: qαΔT. The constant of proportionality between q and ΔT is called the heat capacity. Heat capacity (C) is the amount of heat (q) a substance must absorb to raise its temperature(ΔT) by 1 °C.-Heat capacity has units of J/°C (or J/K), and is an extensive property, depending on the sample size.

  23. Specific Heat Capacity The specific heat (c, or specific heat capacity, Cs) of an object, is the quantity of heat required to change the temperature of 1 gram of a substance by 1°C (or K): Specific heat has units of J/g°C, and is an intensive property, which is independent of the sample size.

  24. Example Calculate the amount of heat needed to increase the temperature of 250g of water from 20oC to 56oC. Answer: q = m x Cg x (Tf - Ti) m = 250g Cg = 4.18 J oC-1 g-1 (from table)Tf = 56oC Ti = 20oC q = 250 x 4.18 x (56 - 20) q = 250 x 4.18 x 36 q = 37 620 J = 38 kJ

  25. What is the difference between heat capacity and specific heat? Heat capacity is the amount of heat required to raise the temperature of any quantity of substance by 1 degree centigrade.Specific heat is the amount of heat required to raise the temperature of 1kg (MASS) of substance by 1 degree substance. The unit for specific heat is J/(g*K). The unit for heat capacity is J/K. Difference between specific heat capacity and heat capacity is identical to difference between concentration and amount of substance - one is intensive, other extensive property.

  26. Heat capacity at constant pressure (or isobaric heat – constant P An isobaric process is a constant-pressure process. In general, none of the three quantities ΔU, Q and dW is zero in an isobaric process For closed syst. in equilib., P-V work only ΔH =

  27. Heat capacity at constant volume (or isochoric heat capacity)-constant V An isochoric process is a constant-volume process. When the volume of a thermodynamic system is constant, it does zero work on the surroundings. Then W = 0, and For closed syst. in equilib., P-V work only w is zero In an isochoric process, all the energy added as heat remains in the system as an increase in internal energy. Heating a gas in a closed constant-volume container is an example of an isochoric process. (Note that there are types of work that do not involve a volume change. For example, we can do work on a fluid by stirring it. In some cases, “isochoric” is used to mean that no work is done). V f = V i : vertical line on p V diagram

  28. Is the law of conservation of Energy.

  29. 1st Law = Conservation of Energy The first law of thermodynamics is simply an expression of the conservation of energy principle. The principle of the conservation of energy states that energy can neither be created nor destroyed.  But it can change from one type of energy to another (for example kinetic to potential) but the total amount remains fixed (The total energy of a closed system remains constant.)

  30. In thermodynamics, energy is classified into three different types: • work (W) • heat (Q) • internal energy (ΔU) • This allows us to write a simple form for conservation of energy (or the first law of thermodynamics) as (the change in the internal energy of a closed system is equal to the amount of heat supplied to the system, minus the amount of work performed by the system on its surroundings) The standard unit for all these quantities would be the joule.

  31. KEY CONCEPTS: • INTERNAL ENERGY • HEAT • WORK Internal Energy Potential & Kinetic Energy

  32. ENERGY • Energyis defined as the ability or capacity to do work on some form of matter (the amount of work one system is doing on another). There are several forms of energy: • Potential energy is the energy that a body possesses as a consequence of its position in a gravitational field (e.g., water behind a dam). • Kinetic energy is the energy that a body possesses as a consequence of its motion (e.g., wind blowing across a wind generator). It is dependent upon an object's mass and velocity (e.g., moving water versus moving air). • Internal energy is the total energy (potential and kinetic) stored in molecules. It is the energy associated with the random, disordered motion of molecules; it refers to the invisible microscopic energy on the atomic and molecular scale. The First Law of Thermodynamics states that energy lost during one process must equal the energy gained during another, i.e., all energy is conserved.

  33. Unit of Energy • Energy is measured in Joules (J) or Calories (cal).1 J = 1 kg m2s-2 • A calorie (cal) is the amount of energy needed to raise the temperature of 1 g of water by 1°C. 1 cal = 4.184 J

  34. INTERNAL ENERGY The internal energy, U of a system is the sum of the kinetic and potential energies of all the particles that compose the system or the total energy of a system (the energy associated with the random, disordered motion of molecules). It involves energy on the microscopic scale.  The total (internal) energy in a system includes potential and kinetic energy.  • Binding energies – atomic bonds • (potential energy from intermolecular forces) • translational kinetic energy • vibrational and rotational kinetic energy

  35. Example For example, a room temperature glass of water sitting on a table has no apparent energy, either potential or kinetic . But on the microscopic scale it is a seething mass of high speed molecules traveling at hundreds of meters per second. If the water were tossed across the room, this microscopic energy would not necessarily be changed when we superimpose an ordered large scale motion on the water as a whole.

  36. There are two ways to change the internal energy: with workand  heat. • Internal energy of an object can be changed by the following methods: • It increases if energy is added to the system. • i.e. by heating or by doing work on the system. • It decreases if energy is removed from the system or work is done by the system. • i.e. Thus heat and work changes the internal energy of an object.

  37. Example Reaction between carbon and oxygen to form carbon dioxide C(s) + O2(g) CO2(g) if the reactants have a higher internal energy than a products, ΔUsysis negative and energy flows out of the system into the surroundings. if the reactants have a lower internal energy than a products, ΔUsysis positive and energy flows into the system from the surroundings.

  38. Internal energy is the state function, which means that its value depends only the state of the system, not the how the system arrive at the state. Example: Altitude is a state function. The change in altitude during climbing depends only on the difference between the final and initial altitudes.

  39. Problems Problem 1: A gas expands against a constant pressure of 1 atm from a volume of 10 L to 20 L. During this process, the system absorbs 600 J of heat from the surroundings. Calculate the internal energy of the system.Answer:ΔU = q + w= 600 J + (-PΔV) = -413 J = 600 J + {- 101.3 Pa (20-10) L}= 600 J + (-1013 J) = - 413 JProblem 2 :q amount of heat is transferred to the system from the surroundings and w amount of work is done by the system. Write the expression for the internal energy.Answer:ΔU = q – w

  40. Study Example 2.3 pg. 50 Calculate U when 1.00 mol of H2O goes from 25.0°C and 1.00 atm to 30.0°C and 1.00 atm. Densities of water are 0.9970 g/cm3 at 0°C and 0.9956 g/cm3 at 100°C. Refer to sildes ‘Specific Heat Capacity’, ‘P-V Work’, and the First Law equation to solve ! Answer: ΔU = q +w =90 cal.

  41. Now, you’ve learn about heat & work, so what is the difference between HEAT & WORK? Heat is an energy transfer between system and surroundings due to a temperature difference. Work is an energy transfer between system and surroundings due to a macroscopic force acting through a distance.

  42. Heat and work, both, are energy. The difference is just the amount of ordered motion during the energy transfer.

  43. Work and Heat Energy transfer between system and surrounding occurs either in the form of work or heat. Heat (Q) → refers to energy transferred from a hot to a cold object. Work (W) → refers to mechanical work W = Fd A system can exchange energy with its surroundings through heat and work:

  44. Summary According to the first law thermodynamic, the change in the internal energy of the system(ΔU) must be the sum of the heat transferred (q) and the work done (w): Sign of conventions for q, w, and ΔU

  45. Enthalpy vs. Energy Enthalpy (H) is the heat flow in or out of a system at constant pressure (i.e., carried out in open containers at or near atmospheric pressure): where E = energy, P = pressure, and V = volume. Enthalpy depends on the amount of substance present. H = ΔU +PΔV For constant-pressure process: ΔH = const. P, closed syst., P-V work only For constant-volume process: ΔU = qVconst. V , closed syst., P-V work only

  46. What is the relationship between the change in energy and enthalpy? Energy transfer occurs as heat when little or no work gets done. This is the case in three scenarios: Reactions that do not involve gases (done at constant pressure with little or no volume change). Reactions in which the number of moles of gas does not change (when Δn = 0 then ΔV = 0). Reaction in which the volume (i.e., moles) changes but the work is negligible compared to the heat.

More Related