350 likes | 467 Vues
This workshop delves into the motivations, current status, and future potential of detecting diffuse supernova neutrinos (DSNnF) from all supernovae (SNe) in the universe. Led by Cecilia Lunardini from Arizona State University, key topics include detection capabilities, scientific implications, and essential models predicting neutrino flux. Challenges such as background signals and uncertainties in supernova rates are discussed, along with the role of new technologies in capturing signals from these cosmic events. A deep dive into the detection potential and rare supernova types provides insights into the future of neutrino astrophysics.
E N D
Diffuse supernova neutrinos at underground laboratories Cecilia Lunardini Arizona State University And RIKEN BNL Research Center INT workshop “Long-Baseline Neutrino Physics and Astrophysics”
Motivations • Current status • The future: • Detection potential • What can we learn? • Extras: what else? C. Lunardini, arXiv:1007.3252 (review)
Diffuse neutrinos from all SNe • Sum over the whole universe: Supernovae S. Ando and K. Sato, New J.Phys.6:170,2004.
Motivations Clip art from M. Vagins
Sooner and more • Faster progress • Alternative to a galactic SN! • ~20 events/yr/Mt everyday physics! • New science • What’s typical ? • New/rare SN types • Cosmological Sne • Physics in the 10-100 MeV window?
The “ingredients” Cosmological rate of supernovae Neutrino flux at production + Propagation effects: Oscillations Redshift …. Cosmology
From Star Formation Rate From SN data Supernova rate RSN(z) ~RSN(0) (1+z)β , z<1 normalization uncertain This work: β=3.28, RSN(0) = 10-4 Mpc-3 yr-1 Beacom & Hopkins, astro-ph/0601463
Original spectra • Models: • Lawrence Livermore • Thompson, Burrows, Pinto (Arizona) • Keil, Raffelt, Janka (Garching) • 3 1053 ergs , equipartitioned between 6 species Keil,, Raffelt,Janka, 2003 Astrophys. J. 590 971 x=μ, τ
Flavor oscillations • Self-interaction + MSW (H) + MSW (L) • Spectral swap • Depend on θ13 and hierarchy • Normal (inverted): ∆m231>0 (∆m231<0) Duan, Fuller, Quian, PRD 74, 2006 Jumping probability, PH C.L. & A. Y. Smirnov, JCAP 0306, 2003
p= 0 – 0.32 , p = 0 – 0.68 Higher energy tail Chakraborty et al., hep-ph/08053131
DSNnF spectrum Exponential decay with E Neutrinos, p=0.32 Neutrinos, p=0 LL TBP KRJ C.L., in preparation
Upper limits and backgrounds SuperKamiokande (Malek et al., PRL, 2003): Energy window Red dashed: Homestake Solid, grey: Kamioka
anti-e flux: predictions C.L., Astropart.Phys.26:190-201,2006
Water Background/signal ~ 5 -6 (at Kamioka) Fogli et al., JCAP 0504, 002, 2005 Energy window Bulk of events missed Large statistics: ~ 1-2 events/MeV/yr
GADZOOKS Background/signal<1 Invisible muons reduced to 1/5 Beacom & Vagins, PRL93, 2004 Energy window Larger energy window: Bulk of events captured! Modest statistics… Scaling to Mt??
New! LAr Background/signal ~ 0.2-0.3 Energy window Bulk of events may be captured! Statistics modest: ~0.2 events/yr/MeV Scaling? C.L., in preparation
Water+Gd: effective spectrum Normalized to 150 events, b=3.28 C.L., Phys.Rev.D75:073022,2007
0.1 Mt yr A step beyond SN1987A! • Test SN codes of spectra formation, some oscillation effects, etc. • 0.1 Mt yr : • Tests part of parameter space • May not reach SN1987A region Yuksel, Ando and Beacom, Phys.Rev.C74:015803,2006
Chance to test Normalized to 150 events r ~ 0.6 – 0.9 C.L., Phys.Rev.D75:073022,2007
New SN types: failed SNe Liebendörfer et al., ApJS, 150, 263, K. Sumiyoshi et al., PRL97, 091101 (2006), T. Fischer et al., (2008), 0809.5129, K. Nakazato et al., PRD78, 083014 (2008) • M > 40 Msun, 9-22% of all collapses • Direct BH-forming collapse (no explosion): • Higher energies: E0 ~ 20 – 24 MeV • For all flavors • Due to rapid contraction of protoneutron star before BH formation • Electron flavors especially luminous • (e- and e+ captures)
Shen et al. (S) EoS nue Anti-nue BH NS nux • Progenitor: M=40 Msun, from Woosley & Weaver, 1995 • “stiffer” eq. of state (EoS) more energetic neutrinos K. Nakazato et al., PRD78, 083014 (2008)
Number of events: water.. • Best case scenario: 22% failed, S EoS Total Normal Failed C.L., arXiv:0901.0568, Phys. Rev. Lett., 2009, J. G. Keehn and C.L., in preparation
LAr • Bulk of events from failed SNe captured • Failed SN at least a 10% effect in energy window Total Normal Failed J. Keehn & C.L., in preparation
Reducing uncertainties • Precise SN rates coming soon from astronomy • Neutrino uncertainties more serious • SN modeling? • Galactic SN? http://snap.lbl.gov/ http://www.jwst.nasa.gov/,
Extras What else is there?
Neutrinos from solar flares? • LSD: 27 flares examined in 3 years • Mt-size advocated for detection Aglietta et al., 1990 Miroshnichenko et al., Space Science Reviews 91: 615–715, 2000 Flare, best Relic SN, 1 year Flare,conservative Erofeeva et al., 1988; Bahcall PRL 1988 Kocharov et al., 1990, Fargion et al., 2008
Solar antineutrinos • Spin-flavor oscillations • νe anti-νe Rashba & Raffelt, Phys.Atom.Nucl.73:609-613,2010
Neutrinos from relic decay/annihilation • χ ν + anti-ν • χ+ χ ν + anti-ν Yuksel & Kistler, PRD, 2007 Gamma rays Palomares Ruiz & Pascoli, Phys.Rev.D77, 2008 Palomares Ruiz, Phys.Lett.B ,2008
MeV Dark Matter absorption Kile and Soni, Phys.Rev.D80:115017,2009
Summary • DSNnF may be seen with few years running! • 100 kt LAr : O(10) events • 0.4 Mt water : O(102) events • New science: • Typical neutrino emission • Sensitive to failed Sne • Other physics in energy window? • To advance further: • Resolve parameter degeneracies (theory) • reduce background at low E