740 likes | 881 Vues
This unpublished paper discusses heap liveness and its implications for automatic memory management, particularly how runtime garbage collectors (RTGCs) can benefit from profiling information. The authors propose methods for both static and dynamic analysis to identify the necessity of objects during execution. They illustrate how understanding liveness can lead to improved garbage collection strategies by determining when objects can be safely collected. By analyzing pathological cases in C and Java, the paper presents a comparative view on memory efficiency and identifies potential optimizations in real-world applications.
E N D
Heap liveness and its usage in automatic memory management • ISMM’02 • Unpublished Ran Shaham Elliot Kolodner Mooly Sagiv TVLAinside http://www.cs.tau.ac.il/~ransh/
Motivation • An object could be collected once it is no longer needed • Yet, run-time garbage collectors (RTGCs) are typically based on reachability • Profiling tools can detect when objects are needed • The compiler can: • Statically identify a subset of unneeded objects • Issue a free instruction (compile-time Garbage Collection) • Issue a warning when a potentially needed object is reclaimed • Inform run-time garbage collector that a reference to an object is not further used
A Pathological C Program a = malloc(…) ; b = a; free (a); c = malloc (…); if (b == c) printf(“unexpected equality”);
Inefficient Java Class public Class Stack { private Object stack[]; private int top; public Stack(int len) { stack = new Object[len]; top = 0; } public synchronized Object pop() { top= top-1; return stack[top]; } public synchronized void push(Object o) { stack[top]=o; top= top+1; } public synchronized void print() { for (int i=0; i<top; i++) { System.out.println(stack[i]); } } } GC does not reclaim the memory stack[top+1]
Needed Location l is needed a reference to l is used p p’ l is allocated
Needed Reference Expression a reference to l is used e is needed p p’ l is allocated e references l e is not needed free(e) is valid
A Pathological C Program a = malloc(…) ; b = a; free (a); c = malloc (…); if (b == c) printf(“unexpected equality”); a is needed
Location Liveness l is live l is used p p’ l is not assigned
Reference Expression Liveness e is live l is used p p’ l is not assigned e denotes a location l Generalizes liveness of program variables when l is &x
Inefficient Java Class public Class Stack { private Object stack[]; private int top; public Stack(int len) { stack = new Object[len]; top = 0; } public synchronized Object pop() { top= top-1; return stack[top]; } public synchronized void push(Object o) { stack[top]=o; top= top+1; } public synchronized void print() { for (int i=0; i<top; i++) { System.out.println(stack[i]); } } } stack[top+1] is not live
Typical GC Limits class Node { Node left, right; int data; } class C { void main(…) { Node root = createTree(); processTree(root.right); } } root
Typical GC Limits class Node { Node left, right; int data; } class C { void main(…) { Node root = createTree(); processTree(root.right); } } root
Typical GC Limits class Node { Node left, right; int data; } class C { void main(…) { Node root = createTree(); processTree(root.right); } } root
Liveness Analysis Aids GC class Node { Node left, right; int data; } class C { void main(…) { Node root = createTree(); processTree(root.right); } } root root.right is live, root.left is dead
Liveness Analysis Aids GC class Node { Node left, right; int data; } class C { void main(…) { Node root = createTree(); processTree(root.right); } } root root.right is live, root.left is dead
Liveness Analysis Aids GC class Node { Node left, right; int data; } class C { void main(…) { Node root = createTree(); processTree(root.right); } } root root.right is live, root.left is dead
Liveness Analysis Aids GC class Node { Node left, right; int data; } class C { void main(…) { Node root = createTree(); processTree(root.right); } } root root.right is live, root.left is dead
Typical GC Limits Program Variables a b c d e f
Outline • Dynamic liveness measurements • Complete location liveness • Assign-null interface • Static analysis algorithms • (Exact) assign null (improve GC) • (Exact) free (CTGC)
Dynamic Liveness Measurements • Estimating the potential of static analysis • Find upper bounds on expected savings • Can be used in as an assistant tool • Liveness information kinds • Stack reference liveness • Global reference liveness • Heap reference liveness
Main Results • Dynamic measurements for 10 benchmarks • Shallow information Small Potential • local variables 2% • global variables 5% • local + global 9% • Deep information Larger Potential • heap liveness 39% complete location liveness 15% assign-null interface
Dynamic measurements • Implemented via an instrumented JVM • Complete location liveness measurements • Single-run algorithm • Assign-null liveness interface • Determines the liveness of expressions • Assign null to dead reference expressions • Requires two runs of the program
Complete Liveness Measurements • An Observation The last use of the references to an object determines the time an object could be collected assuming liveness information
Heap Liveness Example I Stack … use z.f = t x f y f1 f2 z HeapL= t HeapL f f f Static g
Heap Liveness Example I Stack … use y.f2 = t+2 x f y f1 f2 z HeapL= t+2 HeapL= t f f f Static g
Heap Liveness Example II Stack = t’’ StackR = Directly stack reachable (computed during GC) x f StackR = t’’ HeapL= t’ y f1 Collection time = max(t’, t’’) f2 z f f f Static g Collection time(obj) = max(HeapL(obj), StackR(obj), StaticR(obj), OtherR(obj))
Complete Liveness Summary • Mutator • Tracks the last use of references to an object • Collector • Propagation needed for stack/static liveness • Propagates reachability information • Propagates path liveness • Object Collection/Program Termination • Maximum of liveness/reachability properties of an object • Depends on liveness scheme (heap liveness etc.)
Experimental Results • Instrumented Sun’s classic JVM (1.2) • 10 benchmarks (5 SPECjvm) • Time is measured bytes allocated by the mutator so far in program • Total space savings (integral) • Maximum heap size savings (footprint)
Restricted GC Interface • GC Interface • Should be simple/effective/efficient • Feasible heap liveness representation • Assign null to dead heap references • Simple • Effective? • Partially answered by our experiments • Efficient? • Will be answered by static analysis
Null Assignable Program Points • Normalized statements (Java Bytecode) • Manipulate at most one heap reference • x = y.f is null assignable • Could be followed by y.f = null • Dynamic algorithm • First run • Determine null assignable program points • Assume all program points are null assignable • Detect non-null-assignable program points during the run • Second run • Assign null in null assignable program points
n p d d Doubly-Linked List Example – First Run // processing list elements in pairs pt1: y = x.n; // x.n = null; x = null; while (y != null) { pt2: t = y.p; // y.p = null; pt3: d1 = t.d; // t.d = null pt4: d2 = y.d; // y.d = null process(d1, d2); pt5: t = y.n; // y.n = null; y = t; } n x p d d
n p d d Doubly-Linked List Example – First Run // processing list elements in pairs pt1: y = x.n; // x.n = null; x = null; while (y != null) { pt2: t = y.p; // y.p = null; pt3: d1 = t.d; // t.d = null pt4: d2 = y.d; // y.d = null process(d1, d2); pt5: t = y.n; // y.n = null; y = t; } y n [pt1] x p d d
n p d d Doubly-Linked List Example – First Run // processing list elements in pairs pt1: y = x.n; // x.n = null; x = null; while (y != null) { pt2: t = y.p; // y.p = null; pt3: d1 = t.d; // t.d = null pt4: d2 = y.d; // y.d = null process(d1, d2); pt5: t = y.n; // y.n = null; y = t; } y t n [pt1] [pt2] p d d
n p d d Doubly-Linked List Example – First Run // processing list elements in pairs pt1: y = x.n; // x.n = null; x = null; while (y != null) { pt2: t = y.p; // y.p = null; pt3: d1 = t.d; // t.d = null pt4: d2 = y.d; // y.d = null process(d1, d2); pt5: t = y.n; // y.n = null; y = t; } y t n [pt1] [pt2] p [pt3] d d d1
n p d d Doubly-Linked List Example – First Run // processing list elements in pairs pt1: y = x.n; // x.n = null; x = null; while (y != null) { pt2: t = y.p; // y.p = null; pt3: d1 = t.d; // t.d = null pt4: d2 = y.d; // y.d = null process(d1, d2); pt5: t = y.n; // y.n = null; y = t; } y t n [pt1] [pt2] p [pt3] d d [pt4] d2 d1
n p d d Doubly-Linked List Example – First Run // processing list elements in pairs pt1: y = x.n; // x.n = null; x = null; while (y != null) { pt2: t = y.p; // y.p = null; pt3: d1 = t.d; // t.d = null pt4: d2 = y.d; // y.d = null process(d1, d2); pt5: t = y.n; // y.n = null; y = t; } y t n [pt1] [pt5] [pt2] p [pt3] d d [pt4] d2 d1
n p d d Doubly-Linked List Example – First Run // processing list elements in pairs pt1: y = x.n; // x.n = null; x = null; while (y != null) { pt2: t = y.p; // y.p = null; pt3: d1 = t.d; // t.d = null pt4: d2 = y.d; // y.d = null process(d1, d2); pt5: t = y.n; // y.n = null; y = t; } t y n [pt1] [pt5] [pt2] [pt2] p [pt3] d d [pt4] d2 d1
n p d d Doubly-Linked List Example – First Run // processing list elements in pairs pt1: y = x.n; // x.n = null; x = null; while (y != null) { pt2: t = y.p; // y.p = null; pt3: d1 = t.d; // t.d = null pt4: d2 = y.d; // y.d = null process(d1, d2); pt5: t = y.n; // y.n = null; y = t; } t y n [pt1] [pt5] [pt2] [pt1] p [pt3] d d [pt3] [pt4] d2 d1
n p d d Doubly-Linked List Example – First Run // processing list elements in pairs pt1: y = x.n; // x.n = null; x = null; while (y != null) { pt2: t = y.p; // y.p = null; pt3: d1 = t.d; // t.d = null pt4: d2 = y.d; process(d1, d2); pt5: t = y.n; // y.n = null; y = t; } n [pt1] [pt5] [pt2] [pt3] p [pt3] d d [pt3] [pt3] d1 d2
n p d d Doubly-Linked List Example - Second Run // processing list elements in pairs pt1: y = x.n; x.n = null; x = null; while (y != null) { pt2: t = y.p; y.p = null; pt3: d1 = t.d; t.d = null pt4: d2 = y.d; process(d1, d2); pt5: t = y.n; y.n = null; y = t; } n x p d d
d Doubly-Linked List Example - Second Run // processing list elements in pairs pt1: y = x.n; x.n = null; x = null; while (y != null) { pt2: t = y.p; y.p = null; pt3: d1 = t.d; t.d = null pt4: d2 = y.d; process(d1, d2); pt5: t = y.n; y.n = null; y = t; } y t n n p p d d d d2 d1
d Doubly-Linked List Example - Second Run // processing list elements in pairs pt1: y = x.n; x.n = null; x = null; while (y != null) { pt2: t = y.p; y.p = null; pt3: d1 = t.d; t.d = null pt4: d2 = y.d; process(d1, d2); pt5: t = y.n; y.n = null; y = t; } y t n p d d d2 d1
15% average savings for context = 2 • 11% assigning null to instance fields • 10% assigning null to array elements • Results are valid across runs • Detecting null assignable program points on a second input • Running the program with the first input • null assignable program points are those detected for both inputs
Related Work • On the Usefulness of Liveness for Garbage Collection and Leak Detection [HDH01] • Does not handle heap liveness • Algorithm requires two runs • First run: record uses and defs • Analyze log backwards for liveness information • Second run: use liveness results • Garbage Collection and Local Variable Type-Precision and Liveness in Java Virtual Machines [ADM98] • Stack liveness static analysis • Actual trends match our upper bounds • On the Effectiveness of GC in Java [SKS00] • Drag information • Slightly larger potential than heap liveness information • Not clear how to automate space savings • HUP tool (PLDI’01 + M. Pan)
Dynamic liveness measurements -Conclusion • Liveness Information has large potential • Assign null savings “achievable” by static analysis • Stack liveness information • Small potential • Stack+static liveness information • Medium potential • Heap liveness information • Is feasible • Recording history on heap is a powerful mechanism • Larger potential • Depends on static analysis precision • Depends on GC interface
Static Analysis • Combine history with shape analysis • a-La-Horwitz, Pfeiffer, and Reps 1989 • Assign null • Assign null to a dead reference expression • GC exploits information • Free • free an unneeded object
Assign Null Analysis • Insert “x.fld = null” after statements in which the expression x.fld becomes dead • Limitations • Only one reference is assigned null • All the paths to the statement must agree • Detects last-use • Technically • llastu[pt,x.fld](v) • The last use of the location denoted by x.fld occurs at pt • null[pt,x.fld]() • It is safe to insert “x.fld = null” after pt
Assign Null Example // traversing list elements pt1: y = x; pt2: while (y != null) { pt3: t = y.n; pt4: y = t; } n n null[pt3,y.n] x