150 likes | 313 Vues
Gauge-Higgs Dark Matter. 山下 敏史 ( 名古屋大学 ). 2010年1月13日 余剰次元物理研究会 @大阪大学. based on arXiv:0910.3741 [hep-ph] with N. Haba (Osaka Univ.) S. Matsumoto (Toyama Univ.) N. Okada (KEK --> Alabama Univ.).
E N D
Gauge-Higgs Dark Matter 山下 敏史 (名古屋大学) 2010年1月13日 余剰次元物理研究会@大阪大学 based on arXiv:0910.3741 [hep-ph] with N. Haba (Osaka Univ.) S. Matsumoto (Toyama Univ.) N. Okada (KEK --> Alabama Univ.)
Overview • Motivation for beyond the SM • hierarchy problem • dark matter • dark energy • inflation ・・・ SUSY Technicolor Extra dimension(s) ADD (large XD) RS (warped XD) GHU (TeV XD) • DM in gauge-Higgs unification • New DM candidatein general XD • apply it to GHU
Plan • Overview • New DM candidate • Gauge-Higgs Dark Matter • Summary
New DM candidate • What’s the DM? • dark • (NR) matter • (quasi) stable neutral, colorless massive, ・・・ superweak coupling axion, gravitino, ・・・ protecting symmetry by hand R-parity, T-parity, ・・・ accidental KK-parity, ・・・
periodic : even anti-periodic : odd New DM candidate N.Haba, S.Matsumoto, N.Okada and T.Y. arXiv:0910.3741 applicable to S1/Z2 • lightest AP mode as DM candidate S1 compactification : The Lagrangian should be periodic. Fields need not single-valued. e.g.anti-periodic(AP) B.C. can be imposed. Terms w/ odd # of AP fields are AP, and forbidden. AP fields must appear in pairs. accidental Z2
New DM candidate N.Haba, S.Matsumoto, N.Okada and T.Y. arXiv:0910.3741 • lightest AP mode as DM candidate Why should we introduce AP fields? -- In general, no reason other than the DM. -- In the gauge-Higgs unification scenario, AP fermions are often introduced. Because of the structure of GHU, it has strong predictive power. gauge-Higgs dark matter
Plan • Overview • New DM candidate • Gauge-Higgs Dark Matter • Summary
Gauge-Higgs Dark Matter D.B. Fairlie(1979) N.S. Manton(1979) • Gauge-Higgs Unification 5D theory gauge field compactification 4D theory gauge field scalar field with KK modes Higgs 5D gauge invariance protects the Higgs mass!! H.Hatanaka, T.Inami & C.S.Lim (1998)
Gauge-Higgs Dark Matter • warped GHU easily realizes large mKK/mW, Ytand mh. Cf.) flat GHU The EW observables tend to get large corrections. small VEV (additional) AP fermions Haba, Hosotani, Kawamura & T.Y. (‘04) DM? Agashe & Contino (2005) M. Regis, M. Serone & P. Ullio (2003) G. Panico, E. Ponton, J. Santiago & M. Serone (2005) Cf.) model, withan exchange (Z2) symmetry B.C. :
SO(4) SO(5) Gauge-Higgs Dark Matter • our setup N.Haba, S.Matsumoto, N.Okada and T.Y. SM SO(4) boundary Higgs IR brane UV brane EW Higgs B.C.
SO(5) Gauge-Higgs Dark Matter • our setup N.Haba, S.Matsumoto, N.Okada and T.Y. SO(5) adjoint : SM SO(4) boundary Higgs IR brane UV brane EW Higgs B.C.
Gauge-Higgs Dark Matter • SM fermion sector not simple but possible We just assume realistic models are somehow constructed. ( little effect in this calculation.) Higgs effective potential is not calculable. • We treat and as free parameters to parameterize the effective potential, model independently. with • additional AP fermion as GHDM parity odd bulk mass parameter c.
Gauge-Higgs Dark Matter • AP DM in warped GHU relevant int. are those w/ Higgs and gauge. • Interactions with Higgs are largely controlled by the gaugesymmetry. three parameters. • 50 AP fermion (in SO(5) * U(1) model) • --> cross sections • --> Boltzmann Eq. • --> relic abundance
CDMS2 WMAP5 + BAO + SN Gauge-Higgs Dark Matter N.Haba, S.Matsumoto, N.Okada and T.Y. arXiv:0910.3741 • result ( , ) relic abundance direct detection mDM=mh/2
Summary • A new candidate of DM in general XD models Anti-periodic fields appear in always in pairs. accidental Z2 symmetry! • Gauge-Higgs Dark Matter In the GHU, AP fermions often introduced. the lightest one may be the DM. Predictive because of the structure of GHU. • consistent w/ WIMP scenario, • future DD experiments will completely cover the interesting (bulk) region.