20 likes | 135 Vues
This project focuses on the creation and analysis of statistical models related to trauma and injuries. Utilizing a comprehensive data flow framework, it integrates human scan simulations and presents methodologies for precomputing statistical matrices. The system supports visualization and analysis of results through middleware, ensuring streamlined data management from experimental designs to integrative outputs. Key functionalities include baseline exam data tracking, injury propagation modeling, and biomechanical integration, assisting in the inference and understanding of injury patterns.
E N D
precompute demo-compute Task method data data flow VSP — Trauma Demo data flow — N + 1 subjects w/Injuries Statistical Modeling Databasing data(1..N) KF+FE precompute Create data statistical matrices Middleware Visualization 1..N+1 ISR expts expt data UM Integrator display results Executive 1..N+1 ISR baseline exams P-Tag data KF image & data(N+1) UW/UM JSim HIPP Causal Modeling 1 HIPP model UW create model
precompute demo-compute Task method data dataflow VSP — Human Demo data flow — N + 1 simulated subject ± Injuries Create data Statistical Modeling Databasing human scans sim data(1..N) KF+FE precompute statistical matrices Middleware Visualization GEsegment scans sim data UM Integrator display results Executive P-Tag data label mapH KF image & sim data(N+1) tissue props UW/UM JSim SU biomech integration sim data(1..N+1) HIPH-Inj heart geom - prop model Causal Modeling (1..N+1) UW amend HIPH model UW create model HIPH model MRC model generation SU infer Injuries SU propagate Injuries wound modelH Injury list