1 / 15

Boolean Function Analysis and Optimization

Solve problems related to Boolean functions, identify primary implicants, and optimize using SOP form. Understand cost and efficient circuit design.

grazia
Télécharger la présentation

Boolean Function Analysis and Optimization

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Problem 4.5 SOP form Primary implicants: , x2 x1x2 x x x x 1 2 1 2 x x x x 3 4 3 4 00 01 11 10 00 01 11 10 00 0 0 1 0 00 1 1 1 1 01 1 1 1 1 01 1 1 1 1 11 0 0 0 0 11 0 1 1 0 10 1 1 1 0 10 0 0 0 0 (b) =0 (b) =1 F= +

  2. POS form x x x x 1 2 1 2 x x x x 3 4 00 01 11 10 3 4 00 01 11 10 00 0 0 1 0 00 1 1 1 1 01 1 1 1 1 01 1 1 1 1 11 0 0 0 0 11 0 1 1 0 10 1 1 1 0 10 0 0 0 0 (a) (a) F= () () () ()()

  3. Problem 4.6 x x x x 1 2 1 2 x x x x 3 4 00 01 11 10 3 4 00 01 11 10 00 1 1 1 d 00 1 1 1 1 01 1 1 0 1 01 0 0 0 0 11 d d 0 d 11 1 1 0 1 10 d 1 0 1 1 10 d 0 1 (b) (a) + +++

  4. x x x x 1 2 1 2 x x x x 3 4 00 01 11 10 3 4 00 01 11 10 00 1 1 1 d 00 1 1 1 1 01 1 1 0 1 01 0 0 0 0 11 d d 0 d 11 1 1 0 1 10 d 1 0 1 1 10 d 0 1 (b) (a) + + +

  5. Problem 4.7 x x x x 1 2 1 2 x x x x 3 4 00 01 11 10 3 4 00 01 11 10 00 1 1 1 1 00 0 d 0 d 01 0 0 1 1 01 0 1 1 0 11 1 1 1 1 11 1` 0 1 d 10 0 0 0 d 10 1 1 1 1 (b) (a)

  6. x x 1 2 x x x x 1 2 3 4 x x 00 01 11 10 3 4 00 01 11 10 00 1 0 0 1 00 1 0 0 1 01 d 0 0 1 01 d 0 0 1 11 d d 1 0 11 d d 1 0 10 1 d 0 1 10 1 d 0 1 (a) f (a) f f= + f=

  7. Problem 4.12 x x x x 1 2 1 2 x x x x 3 4 00 01 11 10 3 4 00 01 11 10 00 d 1 0 0 00 1 1 0 0 01 0 0 d 1 01 0 0 0 1 11 0 0 1 0 11 0 1 0 d 10 1 0 d 1 10 1 1 0 d (a) g (a) f f= g= f= g= f= + g= + f= + g= +

  8. Problem 4.12 x x x x 1 2 1 2 x x x x 3 4 00 01 11 10 3 4 00 01 11 10 00 d 1 0 0 00 1 1 0 0 01 0 0 d 1 01 0 0 0 1 11 0 0 1 0 11 0 1 0 d 10 1 0 d 1 10 1 1 0 d (a) g (a) f f= + g= +

  9. Problem 4.12 x x x x 1 2 1 2 x x x x 3 4 00 01 11 10 3 4 00 01 11 10 00 d 1 0 0 00 1 1 0 0 01 0 0 d 1 01 0 0 0 1 11 0 0 1 0 11 0 1 0 d 10 1 0 d 1 10 1 1 0 d (a) g (a) f f= + g= + Cost = 5AND+2OR+16ins-AND+8ins-or = 31 < (15+21)=36

  10. Problem 4.12 x x x x 1 2 1 2 x x x x 3 4 00 01 11 10 3 4 00 01 11 10 00 d 1 0 0 00 1 1 0 0 01 0 0 d 1 01 0 0 0 1 11 0 0 1 0 11 0 1 0 d 10 1 0 d 1 10 1 1 0 d (a) g (a) f f= Cost = 3AND+1OR+8ins-AND+3ins-or =15 g= + Cost = 4AND+1OR+12ins-AND+4ins-or =21

  11. Problem 1 and 3 x x 1 2 x x x 1 2 3 x x 00 01 11 10 3 4 00 01 11 10 0 0 0 d d 00 0 1 1 1 01 0 1 1 0 1 1 0 1 1 11 0 0 0 0 g= F = ()() 10 0 1 0 0 (a) f

  12. Problem 5 wx wx yz yz 00 01 11 10 00 01 11 10 00 0 0 1 1 00 0 0 1 1 01 0 1 1 0 01 0 1 1 0 11 1 1 d d 11 1 1 d d 10 0 0 d d 10 0 0 d d (a) f f= + f = ()()

  13. Problem 5 AB AB CD 00 01 11 10 CD 00 01 11 10 00 0 1 1 0 00 0 1 1 0 01 1 0 0 1 01 1 0 0 1 11 0 0 0 0 11 0 0 0 0 10 0 1 1 0 10 0 1 1 0 g g= D g= () ()(B)

  14. x x x x 1 2 1 2 x x x x 3 4 00 01 11 10 3 4 00 01 11 10 00 0 0 0 0 00 0 1 d 0 01 1 0 0 1 01 0 d 1 0 11 1 0 0 1 11 0 d d 0 10 1 1 1 1 d 10 1 1 d (b) (a) f= +

  15. x x x x 1 2 1 2 x x x x 3 4 00 01 11 10 3 4 00 01 11 10 00 0 0 0 0 00 0 1 d 0 01 1 0 0 1 01 0 d 1 0 0 11 1 0 1 11 0 d d 0 10 1 1 1 1 d 10 1 1 d (b) (a) f = ()() ()

More Related