1 / 23

Charm spectroscopy beyond the constituent quark model

Charm spectroscopy beyond the constituent quark model. Charm spectroscopy beyond the constituent quark model. Francisco Fernandez Nuclear Physics Group and IUFFyM University of Salamanca. Charm spectroscopy beyond the constituent quark model.

guzmanmary
Télécharger la présentation

Charm spectroscopy beyond the constituent quark model

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Charm spectroscopy beyond the constituent quark model Charm spectroscopy beyond the constituent quark model Francisco Fernandez Nuclear Physics Group and IUFFyM University of Salamanca

  2. Charm spectroscopy beyond the constituent quark model Do we need to go beyond the constituent quark model to describe the open and hidden charm spectroscopy? - Constituent quark model - Beyond the constituent quarkmodel - 1– hidden charm sector - Dsj - 3940 region

  3. The constituent quark model • Basic ingredients • Chiral symmetry is spontaneously broken at some momentum scale provinding a constituent quark mass M(q2) for the ligth quarks • As a consecuence light constituent quarks exchange Goldstone bosons • Both light and heavy quarks interacts besides by gluon exchange • Finally both type of quarks are confined by a two body linear potential screened at large distancies due to pair creation

  4. N-N interaction F. Fernández, A. Valcarce, U. Straub, A. Faessler. J. Phys. G19, 2013 (1993) A. Valcarce, A. Faessler, F. Fernández. Physics Letters B345, 367 (1995) D.R. Entem, F. Fernández, A. Valcarce. Phys. Rev. C62 034002 (2000) B. Juliá-Diaz, J. Haidenbauer, A. Valcarce, and F. Fernández. Physical Review C 65, 034001, (2002) Baryon spectrum H. Garcilazo, A. Valcarce, F. Fernández. Phys. Rev. C 64, 058201, (2001) H. Garcilazo, A. Valcarce, F. Fernández. Phys. Rev. C 63, 035207 (2001) Meson spectrum. L.A. Blanco, F. Fernández, A. Valcarce. Phys. Rev. C59, 428 (1999) J. Vijande, F. Fernández, A. Valcarce. J. Phys. G31, (2005) The constituent quark model • J. Vijande, F. Fernández, A. Valcarce. J. Phys. G31, (2005)

  5. The constituent quark model Light I=1

  6. The constituent quark model Bottomonium

  7. The constituent quark model

  8. The constituent quark model

  9. qq − → L=1 Jπ=0+,1+ P( s )=-1   qqqq − − L=0 → P(qq)=+1 Beyond the constituent quark model Molecules and tetraquarks Why four quarks configuration?

  10. The 1-- sector The 1-- sector

  11. Leptonic width Strong widths 3P0model The 1-- sector

  12. Dsj(2860) Dsj(2860)

  13. Ds2573)+ Combined modes bkgd subtracted D0 K-p+ D0 K-p+ p0 D+ K-p+p+ Dsj(2860) New States - DsJ(2860)+ DsJ(2860)+ → No structures seen in D*K BaBar data PRL 97 (2006)

  14. Dsj(2860) → →

  15. multiquark Γ[DsJ(2860)0+ → Ds*γ] = 13.7 keV 2P state Γ[DsJ(2860)0+ → Ds*γ] = 1.8 eV Dsj(2860) ←

  16. X(3872) X(3940) Y(3940) Z(3930) X(4160)

  17. M=(4156 15)MeV/c2  =(139 21)MeV +25 −20 D*reconstructed D*tag Our results +111 −61 X(4160) 5.5 M=4166 MeV/c2 =122.9 MeV ((D*D*) =52.3 MeV) X(4160) e+e− J/ D*D*

  18. X(3872) X(3940) Y(3940) Z(3930)

  19. Our results M=3968 MeV. =49.1 MeV. Z(3940) • Observed in 2005 by Belle Collab. • produced in PRL 96 (06) 082003 Helicity angle distribution favours J=2

  20. X(3872) X(3940) Y(3940)

  21. Candidate No candidate No candidate X(3872) X(3940) Y(3940) X(3940) Y(3940) X(3872) Tetraquarks? Molecules?

  22. X(3872) X(3940) Y(3940) ► ► No tensor forces ►

  23. ► Z(3960) and X(4160) can be identified as the and the respectively SUMMARY ► Y(4360 ) and Y(4660) are 1-- states ► Dsj(2860) has a sizeable tetraquark component ► We need to go beyond the constituent quark model to describe the rest of states

More Related