230 likes | 266 Vues
Charm spectroscopy beyond the constituent quark model. Charm spectroscopy beyond the constituent quark model. Francisco Fernandez Nuclear Physics Group and IUFFyM University of Salamanca. Charm spectroscopy beyond the constituent quark model.
E N D
Charm spectroscopy beyond the constituent quark model Charm spectroscopy beyond the constituent quark model Francisco Fernandez Nuclear Physics Group and IUFFyM University of Salamanca
Charm spectroscopy beyond the constituent quark model Do we need to go beyond the constituent quark model to describe the open and hidden charm spectroscopy? - Constituent quark model - Beyond the constituent quarkmodel - 1– hidden charm sector - Dsj - 3940 region
The constituent quark model • Basic ingredients • Chiral symmetry is spontaneously broken at some momentum scale provinding a constituent quark mass M(q2) for the ligth quarks • As a consecuence light constituent quarks exchange Goldstone bosons • Both light and heavy quarks interacts besides by gluon exchange • Finally both type of quarks are confined by a two body linear potential screened at large distancies due to pair creation
N-N interaction F. Fernández, A. Valcarce, U. Straub, A. Faessler. J. Phys. G19, 2013 (1993) A. Valcarce, A. Faessler, F. Fernández. Physics Letters B345, 367 (1995) D.R. Entem, F. Fernández, A. Valcarce. Phys. Rev. C62 034002 (2000) B. Juliá-Diaz, J. Haidenbauer, A. Valcarce, and F. Fernández. Physical Review C 65, 034001, (2002) Baryon spectrum H. Garcilazo, A. Valcarce, F. Fernández. Phys. Rev. C 64, 058201, (2001) H. Garcilazo, A. Valcarce, F. Fernández. Phys. Rev. C 63, 035207 (2001) Meson spectrum. L.A. Blanco, F. Fernández, A. Valcarce. Phys. Rev. C59, 428 (1999) J. Vijande, F. Fernández, A. Valcarce. J. Phys. G31, (2005) The constituent quark model • J. Vijande, F. Fernández, A. Valcarce. J. Phys. G31, (2005)
The constituent quark model Light I=1
The constituent quark model Bottomonium
qq − → L=1 Jπ=0+,1+ P( s )=-1 qqqq − − L=0 → P(qq)=+1 Beyond the constituent quark model Molecules and tetraquarks Why four quarks configuration?
The 1-- sector The 1-- sector
Leptonic width Strong widths 3P0model The 1-- sector
Dsj(2860) Dsj(2860)
Ds2573)+ Combined modes bkgd subtracted D0 K-p+ D0 K-p+ p0 D+ K-p+p+ Dsj(2860) New States - DsJ(2860)+ DsJ(2860)+ → No structures seen in D*K BaBar data PRL 97 (2006)
Dsj(2860) → →
multiquark Γ[DsJ(2860)0+ → Ds*γ] = 13.7 keV 2P state Γ[DsJ(2860)0+ → Ds*γ] = 1.8 eV Dsj(2860) ←
M=(4156 15)MeV/c2 =(139 21)MeV +25 −20 D*reconstructed D*tag Our results +111 −61 X(4160) 5.5 M=4166 MeV/c2 =122.9 MeV ((D*D*) =52.3 MeV) X(4160) e+e− J/ D*D*
Our results M=3968 MeV. =49.1 MeV. Z(3940) • Observed in 2005 by Belle Collab. • produced in PRL 96 (06) 082003 Helicity angle distribution favours J=2
Candidate No candidate No candidate X(3872) X(3940) Y(3940) X(3940) Y(3940) X(3872) Tetraquarks? Molecules?
X(3872) X(3940) Y(3940) ► ► No tensor forces ►
► Z(3960) and X(4160) can be identified as the and the respectively SUMMARY ► Y(4360 ) and Y(4660) are 1-- states ► Dsj(2860) has a sizeable tetraquark component ► We need to go beyond the constituent quark model to describe the rest of states