1 / 26

Lecture 14: GPIO Outputs

Lecture 14: GPIO Outputs. Lecturers: Professor John Devlin Mr Robert Ross. Overview. Driving GPIO Outputs Driving Higher loads Further Reading: MSP430x2xx Family User’s Guide. Configuring GPIO as Outputs. The previous lecture focused on using GPIO pins as inputs

gyda
Télécharger la présentation

Lecture 14: GPIO Outputs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 14: GPIO Outputs Lecturers: Professor John Devlin Mr Robert Ross

  2. Overview • Driving GPIO Outputs • Driving Higher loads Further Reading: • MSP430x2xx Family User’s Guide

  3. Configuring GPIO as Outputs • The previous lecture focused on using GPIO pins as inputs • This lecture will discuss using GPIO pins as outputs • Prior to use, pins must be configured as inputs or outputs (given a direction) • As with inputs, write to the direction register PxDIR the value ‘1’ for each output pin BIS.b #00101101b, &P1DIR ; Sets Pins 0, 2, 3 and 5 of P1 as outputs

  4. Outputting data • PxOUT registers are used to output data • Writing a ‘1’ will output a high to the pin, writing a ‘0’ will output a low to the pin. • Examples: BIS.b #00000010b, &P1OUT ; Sets Pin 1 to high BIC.b #00000001b, &P1OUT ; Sets Pin 0 to low

  5. Προγραμματίζοντας ψηφιακές εξόδους (σε assembly) • Αν γράψουμε στην πόρτα πριν καθορίσουμε ότι είναι έξοδος τα δεδομένα αποθηκεύονται σε buffer της πόρτας και όταν καθορισθεί ότι είναι έξοδος τότε εμφανίζονται οι καταστάσεις στους ακροδέκτες!! • Αυτό είναι σημαντικό!! Αν πρώτα καθορίζαμε την κατεύθυνση σαν έξοδο τότε τα δεδομένα που ήταν ήδη αποθηκευμένα θα επηρέαζαν τις εξόδους οδηγώντας σε απρόβλεπτες καταστάσεις.

  6. Προγραμματίζοντας ψηφιακές εξόδους (σε C (Davies p.71)) • Listing 4.2: Program ledson.c in C to light LEDs with a constant pattern. • // ledson.c - simple program to light LEDs • // Sets pins to output , lights pattern of LEDs , then loops forever • // Olimex 1121 STK board with LEDs active low on P2.3,4 • // J H Davies , 2006 -05 -17; IAR Kickstart version 3.41A • // ---------------------------------------------------------------------- • #include <msp430x11x1.h> // Specific device • void main (void) • { • WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer • P2DIR = 0x18; // Set pins with LEDs to output , 0b00011000 ( • P2OUT = 0x08; // LED2 (P2.4) on , LED1 (P2.3) off (active low!) Στην C δεν //υπάρχει πρόβλημα να καθορίσουμε πρώτα την πόρτα σαν έξοδο!! • for (;;) { // Loop forever ... • } // ... doing nothing • }

  7. Προγραμματίζοντας ψηφιακές εξόδους (absolute assembly) #include <msp430x11x1.h> ; Header file for this device ORG 0xF000 ; Start of 4KB flash memory Reset: ; Execution starts here mov.w #WDTPW|WDTHOLD ,& WDTCTL ; Stop watchdog timer mov.b #00001000b,& P2OUT ; LED2 (P2.4) on , LED1 (P2.3) off (active low!) mov.b #00011000b,& P2DIR ; Set pins with LEDs to output InfLoop: ; Loop forever ... jmp InfLoop ; ... doing nothing ;----------------------------------------------------------------------- ORG 0xFFFE ; Address of MSP430 RESET Vector DW Reset

  8. Προγραμματίζοντας ψηφιακές εξόδους (absolute assembly) • Με την οδηγία ORG 0xF000 ; Start of 4KB flash memory καθορίζουμε την οργάνωση της μνήμης (ORG=ORGANIZATION) για την αποθήκευση του κώδικα γνωρίζοντας ότι ο χώρος διευθύνσεων της flash μνήμης ξεκινά από 0xF000

  9. Προγραμματίζοντας ψηφιακές εξόδους (absolute assembly) Για να ξεκινήσει η εκτέλεση του κώδικα χρησιμοποιούμε τα εξής: • Ορίζουμε μια ετικέτα Reset στην αρχή του κώδικα • Με την οδηγία ORG 0xFFFE και DW Reset καθορίζουμε ότι στο RESET Vector θα αποθηκευθεί η διεύθυνση της πρώτης εντολής του κώδικα. Έτσι ξεκινά η εκτέλεση προγράμματος στον MSP430

  10. Προγραμματίζοντας ψηφιακές εξόδους (relocatable assembly) #include <msp430x11x1.h> ; Header file for this device RSEG CODE ; Program goes in code memory Reset: ; Execution starts here mov.w #WDTPW|WDTHOLD ,& WDTCTL ; Stop watchdog timer mov.b #00001000b,& P2OUT ; LED2 (P2.4) on , LED1 (P2.3) off (active low!) mov.b #00011000b,& P2DIR ; Set pins with LEDs to output InfLoop: ; Loop forever ... jmp InfLoop ; ... doing nothing ;----------------------------------------------------------------------- RSEG RESET ; Segment for reset vector DW Reset ; Address to start execution END

  11. Προγραμματίζοντας ψηφιακές εξόδους (relocatable assembly) • The basic action of the linker is to group parts of the program that use the same type of memory into segments and allocate these to appropriate addresses of the MCU. Here we use only two types of memory, the executable code and the reset vector, whose segments have obvious names. • The directive RSEG CODE tells the assembler that the following instructions should be put in the CODE segment, which the linker then puts at the correct address in flash memory. RSEG stands for “relocatable segment,” meaning that the address is assigned by the linker (the alternative is ASEG for “absolute segment,” in which case we must provide the address). The relation between segments and addresses is defined in the linker control script, lnk430F1121A.xcl for this device.

  12. Example – Square Wave • Create a square wave on P1.0 (Port1, Bit 0) with a duty cycle of 50% MOV.b #00000001b, &P1DIR ; Set P1.0 as output BIS.b #00000001b, &P1OUT ; Set output as 1 invert XOR.b #00000001b, &P1OUT ; Inverts bit 0 MOV #0, R4 ; Reset R4 (used as a counter) loop INC R4 ; Increment R4 CMP #100, R4 ; Does R4 = 100 JNE loop ; If R4 != 100 keep counting JMP invert ; If R4 = 100, invert bit NOTE: Comments improve readability

  13. Example – Square WaveMore efficient – 1 less instruction! • Create a square wave on P1.0 (Port1, Bit 0) with a duty cycle of 50% MOV.b #00000001b, &P1DIR ; Set P1.0 as output BIS.b #00000001b, &P1OUT ; Set output as 1 invert XOR.b #00000001b, &P1OUT ; Inverts bit 0 MOV #100, R4 ; Reset R4 (used as a counter) loop DEC R4 ; Decrement R4 JNZ loop ; If R4 != 0 keep counting JMP invert ; If R4 = 0, invert bit NOTE: Comments improve readability

  14. Combining Input and Output • A switch is connected to P1.7 • A LED is connected to P1.2 • While switch is pressed turn LED on, when switch is not pressed turn LED off

  15. Solution MOV.b #01111111b, &P1DIR ; Set P1.7 as input ; P1.0- P1.6 as outputs loop BIT.b #10000000b, &P1IN JNZ led_off ; If R4 = 1, button not pressed BIC.b #00000100b, &P1OUT ; Outputs Low, LED on JMP loop led_off BIS.b #00000100b, &P1OUT ; Outputs High, LED off JMP loop

  16. Alternate Solution MOV.b #01111111b, &P1DIR ; Set P1.7 as input ; P1.0 - P1.6 as outputs loop MOV.b &P1IN, R4 MOV.b &P1OUT, R5 AND #10000000b, R4 ; Mask out unwanted bits RRA R4 ; Move bit 7 to bit 2 RRA R4 RRA R4 RRA R4 RRA R4 BIS R4, R5 ; If 1 will turn off LED BIS #11111011b, R4 ; Setup all other bits AND R4, R5 ; If 0 will turn on LED MOV.b R5, &P1OUT ; Move to output JMP loop

  17. Circuit of an Input/Output Pin(Davies p.212)

  18. Circuit of an Input/Output Pin(Davies p.212) • The input protection diodes can cause a puzzling side effect. Suppose that a logical high • input is applied to a circuit whose power supply is not connected. Current flows through • the protection diode from the input to VCC, from where it supplies the rest of the circuit. • Thus the circuit works almost normally, despite having no apparent source of power.

  19. Circuit of an Input/Output Pin(Davies p.212)

  20. Output hardware • Microprocessors typically only have small amount of current they can sink (take in) or source (supply) on the GPIO outputs • MSP430: 12mA Source, 48mA Sink (across port) • Low power LED’s can used in a sink arrangement • Higher Power Loads • Relays • FET’s

  21. Vcc R MCU Driving LED’s • R is a current limiting resistor • VOL(MAX) (Max low voltage output from uP) - Typically 0.5V • VF (LED forward voltage) – Typically 1.7-2.2V • IF (LED forward current) – Typically 10-30mA

  22. Vcc R MCU Driving LED’s • Eg. • VCC = 5V • VOL(MAX) =0.2V • VF = 1.7V • IF =15mA • R = 206Ω • Can use either 180Ω or 220Ω

  23. 12V MCU R1 R2 Relays • Relays are electromagnetic switches • They require higher current than microprocessors can typically source and therefore need to be driven with a transistor • Diode protects transistor from back EMF

  24. Relays are slow, noisy – acoustically and sometimes electrically – and are mechanical – so eventually wear out FETs (Field Effect Transistors) have low on resistance and can be used like switches FET’s Microcontroller

  25. A useful application of FETs is in H-Bridges H-Bridges used for bi-directional motor control (forward/reverse) ROV motor controller H-Bridges

  26. Summary • GPIO Pins can be configured as outputs by writing a ‘1’ to their PxDIR register • Outputs are controlled via the PxOUT registers • Higher loads can be driven using Transistors, FET’s and Relays

More Related