1 / 49

Chapter 8 The Operational Amplifier (Part I) ~ Using PSpice

Chapter 8 The Operational Amplifier (Part I) ~ Using PSpice. The Ideal Op Amp Noninverting Ideal Op Amp Op Amp Giving Voltage Difference Output Frequency Response of the Op Amp Using a Subcricuit for the Op Amp Op Amp differentiator Circuit Op Amp Integrator Circuit

Télécharger la présentation

Chapter 8 The Operational Amplifier (Part I) ~ Using PSpice

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 8 The Operational Amplifier (Part I) ~ Using PSpice • The Ideal Op Amp • Noninverting Ideal Op Amp • Op Amp Giving Voltage Difference Output • Frequency Response of the Op Amp • Using a Subcricuit for the Op Amp • Op Amp differentiator Circuit • Op Amp Integrator Circuit • Response to Unit Step Function • Double Op Amp Circuit

  2. The Ideal Op Amp • High input resistance, zero output resistance, and high voltage gain

  3. The Ideal Inverting Op Amp Negative feedback connection PSpice version of the circuit

  4. Input File Ideal Operational Amplifier VS 1 0 1V E 3 0 0 2 200E3 RI 2 0 1G R1 1 2 1K R2 3 2 10K .OP .OPT nopage .TF V(3) VS .END

  5. Run the Analysis and Verify • Run  V(3)/VS=-9.999 • Verify Vo/Vs=-R2/R1=-10K/1K=-10

  6. Noninverting Ideal Op Amp Noninverting ideal op amp Noninverting ideal op amp model

  7. Input File Ideal Operational Amplifier, Noninverting VS 1 0 1V E 3 0 1 2 200E3 RI 1 2 1G R1 2 0 1k R2 3 2 9k .op .opt nopage .TF V(3) VS .END

  8. Run and Verify • V(3)/VS=10, • Vo/Vs=1+R2/R1=1+9K/1K=10

  9. Op Amp Giving Voltage Difference Output

  10. Input File Op Amp Giving Voltage Difference Output VA 1 0 3V VB 4 0 10V E 5 0 3 2 200E3 RI 2 3 1G R1 1 2 5k R2 5 2 10k R3 4 3 5k R4 3 0 10k .OP .OPT nopage .TF V(5) VB .END

  11. Run and Verify • Verify that Vo=R2(Vb-Va)/R1=10k(10v-3v)/5k=14v • V(5)=14V

  12. Frequency Response of the Op Amp • Model for the frequency response of an op amp fc=10Hz

  13. Input File Op Amp Model with 3-dB frequency at 10 Hz for Open-Loop Gain VS 2 0 AC 1mV EG 3 0 2 1 1E5 E 6 0 4 0 1 RI1 3 4 1k RO 6 5 50 R1 0 1 10k RL 5 0 22k RIN 1 2 1MEG C 4 0 15.92uF .AC DEC 40 1 1MEG .PROBE .END

  14. Run and View Output

  15. Modify Input File Op Amp Model with 3-dB frequency at 10 Hz for Open-Loop Gain VS 2 0 AC 1mV EG 3 0 2 1 1E5 E 6 0 4 0 1 RI1 3 4 1k RO 6 5 50 R1 0 1 10k R2 5 1 240k RL 5 0 22k RIN 1 2 1MEG C 4 0 15.92uF .AC DEC 40 1 1MEG .PROBE .END

  16. Parameter Setting

  17. Run and View Output

  18. Using a Subcircuit for the Op Amp .subckt opamp m p vo eg a 0 p m 1e5 e c 0 b 0 1 rin m p 1meg ril a b 1k c b 0 15.92uF rol c vo 50 .ends

  19. Op Amp Analysis Using Subcircuit Op Amp Analysis Using Subcircuit VS 2 0 AC 1mV R1 1 0 10k R2 3 1 240k X 1 2 3 opamp .AC DEC 40 100 1MEG .PROBE .subckt opamp m p vo eg a 0 p m 1e5 e c 0 b 0 1 rin m p 1meg ril a b 1k c b 0 15.92uF rol c vo 50 .ends .END

  20. Op Amp Differentiator Circuit • Vo=-dv/dt

  21. Input File Differentiator Circuit V 1 0 PWL (0, 0 1s, 1V 2s, 0) C 1 2 2F R 2 3 0.5 X 2 0 3 iop .subckt iop m p vo ri m p 1meg e vo 0 p m 2e5 .ends .TRAN 0.05s 2s .PROBE .END

  22. Run and View Outputs V(1) Vo

  23. Op Amp Integrator Circuit

  24. Input File Integrator Circuit V 1 0 PWL (0 0 0.01ms, -1V 1s, -1V 1000.01ms, 0V 2s, 0V 2000.01ms, 1V 3s, 1V) R 1 2 0.5 C 2 3 2 X 2 0 3 iop .subckt iop m p vo ri m p 1meg e vo 0 p m 2e5 .ends .TRAN 0.05s 3s .PROBE .END

  25. Run and View Output V(1) Vo

  26. Response to Unit Step Function • By definition, it remains at zero volts until t=0, and from that time forward it is 1V.

  27. Response of first-order circuit to unit step function

  28. Input File Response to Unit Step Function Vs 1 0 PWL (0, 0 1us, 1v 5s, 1v) C 2 3 0.125 R 2 3 2 R1 2 0 1 X 2 1 3 iop .subckt iop m p vo ri m p 1meg e vo 0 p m 2e5 .ends .TRAN 0.05s 3s .PROBE .END Vo(t)=(3-2e-4t)u(t)

  29. Run and View Outputs

  30. Double Op Amp Circuit

  31. Input File Double Op Amp Circuit for Gain-Bandwidth Analysis VS1 2 0 AC 1mV R1 1 0 10k R2 3 1 240k X1 1 2 3 opamp VS2 5 0 AC 1mV R3 4 0 10k R4 6 4 15k X2 4 5 6 OPAMP .AC DEC 40 100 10MEG .PROBE .subckt opamp m p vo eg a 0 p m 1e5 e c 0 b 0 1 rin m p 1meg ril a b 1k c b 0 15.92uF rol c vo 50 .ends .END

  32. Run and View Outputs OP Amp 1 OP Amp 2

  33. Chapter 8 The Operational Amplifier (Part II) ~ Using Capture • Noninverting Ideal Op Amp • Op Amp for Voltage-Difference Output • Frequency Response of the Op Amp • Frequency Response of the uA741 • The uA741 as a Level Detector

  34. Noninverting Ideal Op Amp Ideal op amp in Capture Ideal op amp

  35. Run and View Output

  36. Op Amp for Voltage-Difference Output

  37. Run and View Output

  38. Frequency Response of the Op Amp

  39. Op amp model for fc=10Hz

  40. Simulation Setting

  41. Run and View Output 20*log10(V(5)/V(2))

  42. DB(V(5)/V(2))

  43. Frequency Response of the uA741

  44. Run and View Output Frequency response of the uA741

  45. The uA741 as a Level Detector

  46. V1 (VPWL) Settings (0v, 0s), (3v, 0.2s), (5v, 0.4s), (-5v, 0.6s), (-3v, 0.8v), (0v, 1s)

  47. Simulation Settings

  48. Run and View Output V(1) input V(5) Output

  49. Question & Answer

More Related