1 / 10

Chemical Formulas

Chemical Formulas. Subscripts represent relative numbers of elements present (Parentheses) separate complexes or substituted elements Fe(OH) 3 – Fe bonded to 3 separate OH groups (Mg, Fe)SiO 4 – Olivine group – mineral composed of 0-100 % of Mg, 100-Mg% Fe. Stoichiometry.

hani
Télécharger la présentation

Chemical Formulas

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chemical Formulas • Subscripts represent relative numbers of elements present • (Parentheses) separate complexes or substituted elements • Fe(OH)3 – Fe bonded to 3 separate OH groups • (Mg, Fe)SiO4 – Olivine group – mineral composed of 0-100 % of Mg, 100-Mg% Fe

  2. Stoichiometry • Some minerals contain varying amounts of 2+ elements which substitute for each other • Solid solution – elements substitute in the mineral structure on a sliding scale, defined in terms of the end members – species which contain 100% of one of the elements

  3. Chemical heterogeneity • Matrix containing ions a mineral forms in contains many different ions/elements – sometimes they get into the mineral • Ease with which they do this: • Solid solution: ions which substitute easily form a series of minerals with varying compositions (olivine series  how easily Mg (forsterite) and Fe (fayalite) swap…) • Impurity defect: ions of lower quantity or that have a harder time swapping get into the structure

  4. Compositional diagrams Fe3O4 magnetite Fe2O3 hematite FeO wustite A Fe O A1B1C1 x A1B2C3 x B C

  5. Si fayalite forsterite enstatite ferrosilite Fe Mg fayalite forsterite Fe Mg Pyroxene solid solution  MgSiO3 – FeSiO3 Olivine solid solution  Mg2SiO4 – Fe2SiO4

  6. KMg3(AlSi3O10)(OH)2 - phlogopite • K(Li,Al)2-3(AlSi3O10)(OH)2 – lepidolite • KAl2(AlSi3O10)(OH)2 – muscovite • Amphiboles: • Ca2Mg5Si8O22(OH)2 – tremolite • Ca2(Mg,Fe)5Si8O22(OH)2 –actinolite • (K,Na)0-1(Ca,Na,Fe,Mg)2(Mg,Fe,Al)5(Si,Al)8O22(OH)2 - Hornblende Actinolite series minerals

  7. Normalization • Analyses of a mineral or rock can be reported in different ways: • Element weight %- Analysis yields x grams element in 100 grams sample • Oxide weight % because most analyses of minerals and rocks do not include oxygen, and because oxygen is usually the dominant anion - assume that charge imbalance from all known cations is balanced by some % of oxygen • Number of atoms – need to establish in order to get to a mineral’s chemical formula • Technique of relating all ions to one (often Oxygen) is called normalization

  8. Normalization • Be able to convert between element weight %, oxide weight %, and # of atoms • What do you need to know in order convert these? • Element’s weight  atomic mass (Si=28.09 g/mol; O=15.99 g/mol; SiO2=60.08 g/mol) • Original analysis • Convention for relative oxides (SiO2, Al2O3, Fe2O3 etc)  based on charge neutrality of complex with oxygen (using dominant redox species)

  9. Normalization example • Start with data from quantitative analysis: weight percent of oxide in the mineral • Convert this to moles of oxide per 100 g of sample by dividing oxide weight percent by the oxide’s molecular weight • ‘Fudge factor’ from Perkins Box 1.5, pg 22: is process called normalization – where we divide the number of moles of one thing by the total moles  all species/oxides then are presented relative to one another

More Related