1 / 20

Kitaoka Laboratory

Coexistence of superconductivity and antiferromagnetism in multilayered high- T c superconductor. Kitaoka Laboratory. SHIMIZU SUNAO. H.Kotegawa et al Phys.Rev.B 69,014501(2004). Contents. High – Tc superconductor Antiferromagnetism. Introduction. Knight shift NQR ZF-NMR

Télécharger la présentation

Kitaoka Laboratory

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Coexistence of superconductivity and antiferromagnetism in multilayered high-Tc superconductor Kitaoka Laboratory SHIMIZU SUNAO H.Kotegawa et al Phys.Rev.B 69,014501(2004)

  2. Contents • High – Tc superconductor • Antiferromagnetism Introduction • Knight shift • NQR ZF-NMR • Data and results Experiment Summary

  3. HgCaBaCuO (高圧下) 160 HgCaBaCuO (高圧下) TlCaBaCuO HgCaBaCuO TlCaBaCuO BiCaSrCuO 100 YBaCuO 80 The upper limit of Tc is about 30~40K 60 LaSrCuO Nb3Ge V3Si LaBaCuO NbN NbC Pb Nb-Al-Ge Nb3Sn Nb • 「The limit of BCS」 Hg 0 年 1910 1930 1950 1970 1990 Discovery of the high-Tc superconductivity Tc -100℃ 160 100 liquid nitrogen -273℃ O 1911 1986

  4. High-Tc superconductor CuO2 plane charge reservoir layer A.F. ; antiferromagnetism (電荷供給層) SC ; superconductivity

  5. exchange interaction J Si・Si+1 J: size of interaction Si , Si+1: electron spin REPULSIVE force makes magnetic order. Antiferromagnetism

  6. doping holes (picking out electrons) Metal with antiferrromagnetic property Metal Insulator to metal Insulator

  7. HgBa2Canー1CunO2n+2+δ Highest-Tc Record! OP IP IP* IP OP Hg-1201 Hg-1212 Hg-1223 Hg-1234 Hg-1223 Hg-1245 Hg-1245 Hg-1256 Crystal Structures Hg ~ Hg-based cuprates ~ O Ba Cu Ca

  8. n≧3 ; two types of CuO2 plane Different hole density at OP or IP Cu OP IP O Multilayerd High-Tc superconductor

  9. Hg Ba O OP Ca Cu IP bulk superconductivity ; Tc = 108K IP* IP OP H (T) HgBa2Ca4Cu5O

  10. Hint ∝M M ; magnetic moment Hint I Hint= 0 Hint ≠0 f ( MHz) ZFーNMR Antiferromagnetic order ferromagnetic order

  11. IP ; Affected by the internal field antiferromagetic order Hint = ω / γ Hint(IP) = 6.1 T Hint(IP*) = 7.7 T OP ; Nuclear quadrupole resonance perturbed by internal field νQ = 8.37 MHz (IP) 16.05 MHz (OP) Internal field

  12. SC ;Tc = 108 K OP AF; M = 0.3μB IP AF; M = 0.37μB IP* AF; M = 0.3μB IP SC ;Tc = 108 K OP M = 0.64 μB HgBa2Ca4Cu5O La2CuO4

  13. H = 0 H≠0 H Energy=-μ・H =-  I・H H e H I resonance condition H+H= ω/γ ∴H = ω/γ- H =ω/γ(1-K) H= ω ∴H=ω/γ K:Knight shift K H Knight shift

  14. Nh(OP)=0.0462 + 0.502 Kab,spin(RT,OP) δ= {3Nh(IP) + 2Nh(OP)} / 5 δ= 0.12 Nh(IP) ~ 0.06 0.06 0.22 Doping level K = Kspin(T) + Korb Nh(OP) ~0.22

  15. OP IP IP* IP OP summary SC ;Tc = 108 K AF ; M = 0.3μB AF ; M = 0.37μB AF ; M = 0.3μB SC ;Tc = 108 K Nh(OP) ; 0.22 Nh(IP) ; 0.06

  16. + + + ⅰ) I = 0 m = ±3/2 m = ±1/2 νQ = 8.37 MHz (IP) 16.05 MHz (OP) energy splitting ; I = 3/2 NQR ⅱ) I  ≧ 1 I ; nuclear spin

  17. AM M BM Hint Kspin, α= ( Aα+4B) χspin ( Ac+4B) Kspin, c 0.267 (IP) = = Kspin, ab ( Aab+4B) 0.379(OP) Ac = -170 kOe/μB Aab = 37 kOe/ μB B (IP) = 61 kOe/ μB M (IP) = 0.30 μB {Aab- 4B } = -207 kOe/ μB M (IP*) = 0.37 μB Hint = {Aab- 4B } M

  18. t < U t: kinetic energy U: potential energy Nh(OP) =0.22 Nh(IP) = 0.06

More Related