1 / 18

Case I: Design of experimental optimization for ULSI CMP process applications

Case I: Design of experimental optimization for ULSI CMP process applications. Sung-Woo Park a , Chul-Bok Kim b , Sang-Yong Kim c , Yong-Jin Seo a,* A Department of Electrical Engineering , Daebul University , 72- 1, Sanho , Samho , Youngam , Chonnam , 526- 702, South Korea

hoai
Télécharger la présentation

Case I: Design of experimental optimization for ULSI CMP process applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Case I: Design of experimental optimization for ULSI CMP process applications Sung-Woo Park a , Chul-Bok Kim b , Sang-Yong Kim c , Yong-Jin Seo a,* ADepartment of Electrical Engineering , Daebul University , 72- 1, Sanho , Samho , Youngam , Chonnam , 526- 702, South Korea BDong Sung A &T Co ., Kyunggi 429- 450, South Korea cFAB . Division , ANAM Semiconductor Co ., Inc ., Kyunggi 420- 040, South Korea

  2. Background • 當電子元件收縮到深次微米區域,化學機械拋光 (CMP)在ULSI製程中對多層次連接的平坦度上非常重要的程序。 • 移除率(remove rate)和非均一性(non-uniformity)方面是主要的製程效能與品質指標。 • 運用實驗設計方法將 CMP 儀器參數予以最佳化。 • 以高移除率和較低的非均一性觀點檢查製程參數,並決定最佳的 CMP 參數。

  3. Experiments • 實驗機台: CMP polisher (精拋機) • 控制因子: • Slurry flow rate :以含有SiO顆粒及KOH填補研磨空隙,防止應力破壞。 研磨後,以純水及旋轉方式清洗表面。 • Table and Head speed :兩者研磨轉速。 • Down force :將晶圓下壓的力量。

  4. Flow rate>90 阻礙remove rate Flow rate>60 非均一性變大

  5. Conclusions • 經過DOE之後﹐CMP 參數最佳化非均一性在4%以 下﹐Remove rate超過 2000° A/min 。 • 必須小心地設計Head/Table speed比例(1~2倍) 。 • What’s wrong?

  6. Case II: 光阻膜厚試驗 89.10.11~89.11.07

  7. Background • 目的:為使晶片上之金屬層形成我們所需的線路,覆蓋於金屬層上的光阻必須有一均勻的厚度以利後續的曝光(exposure),顯影(develop)及蝕刻(etchig)。本實驗的目的即針對AZ1500光阻特性尋找膜厚為4.5µ且均勻度最好的操作條件。 • 光阻塗佈工作流程: START→熱烤→降溫→光阻塗佈(旋開式)→熱烤→降溫→END

  8. 因子選取 • X1:烘烤溫度(上光阻前) Hot plate temperature (wafer) • X2:烘烤時間(上光阻前) Hot plate time (wafer) • X3:預轉轉速 Pre-spin speed • X4:預轉時間 Pre-spin time • X5:主轉轉速 Main spin speed • X6:主轉時間 Main spin time • X7:甩乾轉速 Dry spin speed • X8:甩乾時間 Dry spin time • X9:烘烤時間(上光阻後) Hot plate temperature ( after coating ) • X10:烘烤溫度(上光阻後) Hot plate time ( after coating )

  9. 其他因子 • 光阻量 • 降溫時間(上光阻前) • 預轉加速度時間 • 主轉加速時間 • 甩乾加速時間 • 降溫時間(上光阻後) • 氣壓壓力

  10. 反應變數 • 光阻厚度 ( 4.45µ ≦ film thickness ≦ 4.55μ) • 均勻度 ( uniformity≦1 % )

  11. 第一階段實驗 • 210-5+(nc=5) • 解析度III以上,可了解主因子作用。 • 中心點複製以估算實驗自然誤差。 • 實驗結果: thickness :主要影響因子 x5,x9 次要影響因子 x3,x4 uniformity:差異不明顯

  12. 第一階段ANOVA

  13. 第二階段實驗 • 反應曲面技術,使用CCD。 • 排除影響力最小的X4,3因子CCD,共20次實驗,每因子5水準,以估算2次曲線之適合度。 • Final Equation in Terms of Coded Factors: thickness =4.49 + 0.011 * A(x3) -0.063 * B(x5) -0.054 * C(x9) 因A(x3)作用不明顯,可視為實驗誤差, 此式可簡化為下列: thickness =4.49 -0.063 * B(x5) -0.054 * C(x9)

  14. 結論 操作條件: 設定 允許範圍 90-110 50-70 2000-2400 3-5 1875-1925 25-35 2800-3200 7-13 95-100 80-100

More Related