50 likes | 132 Vues
This research focuses on preprocessing data, feature selection methods, and classifier optimization in data mining, with a detailed exploration of algorithms such as BestFirst, Genetic Search, and classification techniques like Bagging and Decorate. The study culminates in achieving a final error rate of 3.50%.
E N D
Data mining Μιχαηλίδου Χριστίνα Μάιος 2009
προεπεξεργασια • Μετατροπή της output σε nominal • Επιλογή χαρακτηριστικών • BestFirst – CfsSubSetEval6 attr. • Genetic Search – CfsSubsetEval 14 attr.
classify • BestFirst – CfsSubSetEval (attributes 5, 6, 18, 26, 34, 36) ΑΛΓΟΡΙΘΜΟΙ:oneR, conjuctiveRule, BayesNet, MetaAdaBoost, MetaEnd.
classify • Genetic Search – CfsSubsetEval (attributes 1,4,5,6,13,14,18,20,26,29,30,32,33,37)
Preprocess • filtersinstanceRemoveMissClassified • Classifier: Decorate classify • classifiersmetaBagging • Σφάλμα: 4.23% • classifiersmetaΕnd • Σφάλμα: 3.50% (Τελική επιλογή)