270 likes | 407 Vues
This document explores the semantics of programming languages through interpreters, based on Chapter 3 of "Essentials of Programming Languages" by Prabhaker Mateti. It covers the LET language, the structure of abstract syntax trees (AST), and the roles and functions of various expressions within the language. It includes an introduction to interpreters versus compilers, detailed examples, code snippets, and the specification of value resolution in the LET language. The source code is provided for practical understanding, tested in PLT Scheme and Racket.
E N D
Semantics of PLs via Interpreters: Getting Started CS784: Programming Languages Prabhaker Mateti
Study … • EOPL3 Chapter 3: 3.1, 3.2 • source code: chapter3/let-lang/* • 1722 data-structures.scm • 4415 drscheme-init.scm • 1450 environments.scm • 2057 interp.scm • 1501 lang.scm • 1857 tests.scm • 2007 top.scm
EOPL3 Source Code • All the code in the book, as a zip archive (211 Kb). • http://www.eopl3.com/allcode.zip • tested under PLT Scheme versions 372 and 4.2. • It should run unchanged in Racket 5.1.3 . • To make it more consistent with current Racket code, remove(module name (lib "eopl.ss" "eopl") .... )around each file, and write #langeoplat the top of the file instead. • If the module says(module name mzscheme .... ) use #langmzschemeinstead (NOT #lang racket -- the syntax for require/provide is slightly different).
Interpreter vs Compiler • Input: Abstract Syntax of a program (AST) • Output:“Meaning” of the program • An interpreter carries out the meaning of a program. • A compiler transforms a program in one language into a program in a lower-level language preserving the meaning.
Fig 3.2 The LET language Concrete/Abstract Syntax Comments on the syntax Six kinds of expressions. Assume Scheme syntax for id and number. Minus is used as a function name. Uses std math notation for apply. then-body and else-body are single expressions. exp1 is the first expression and body is the second expression.
Examples in the LET language • let x = 5 in -(x,3) • let z = 5 in let x = 3 in let y = -(x,1) % here x = 3 in let x = 4 in -(z, -(x,y)) % here x = 4 • let x = 7 in let y = 2 in let y = let x = -(x,1) in -(x,y) in -(-(x,8), y)
scan&parse • (scan&parse "-(55, -(x,11))") • #(struct:a-program • #(struct:diff-exp • #(struct:const-exp 55) • #(struct:diff-exp • #(struct:var-exp x) • #(struct:const-exp 11))))
Values Of The Language • Expressed values are the values of exp. • Denoted values are bound to variables. • Not always the same, in general. • In LET, they are the same: • ExpVal = Int + Bool • DenVal = Int + Bool
Functions in our LET-Interpreter • constructors • const-exp : Int →Exp • zero?-exp : Exp → Exp • if-exp : Exp × Exp × Exp → Exp • diff-exp : Exp × Exp → Exp • var-exp : Var → Exp • let-exp : Var × Exp × Exp → Exp • observer • value-of : Exp × Env → ExpVal
Spec of value-of • (value-of (const-exp n) ρ) = (num-val n) • (value-of (var-exp var) ρ)= (apply-envρ var) • (value-of (diff-exp exp1 exp2) ρ)=(num-val(- (expval->num (value-of exp1 ρ))(expval->num (value-of exp2 ρ)))) • Three more remaining.
Specifying Programs • initial environment • [i=1, v=5, x=10] • (value-of-program exp) = (value-of exp [i=[1],v=[5], x= [10]])
Spec of value-of • (value-of (if-exp exp1 exp2 exp3) ρ) = (if (expval->bool (value-of exp1 ρ)) (value-of exp2 ρ) (value-of exp3 ρ)) • (value-of (let-expvarexp1 body) ρ) = (value-of body [var = (value-of exp1 ρ)] ρ)
Fig 3.6 LET lang AST def (if-exp (exp1 expression?) (exp2 expression?) (exp3 expression?)) (var-exp (var identifier?)) (let-exp (var identifier?) (exp1 expression?) (body expression?))) • (define-datatype program program? (a-program (exp1 expression?))) • (define-datatype expression expression? • (const-exp • (num number?)) • (diff-exp • (exp1 expression?) • (exp2 expression?)) • (zero?-exp • (exp1 expression?))
(init-env) = [i= 1,v= 5,x=10] • (define init-env • (lambda () • (extend-env • 'i (num-val 1) • (extend-env • 'v (num-val 5) • (extend-env • 'x (num-val 10) • (empty-env))))))
Fig 3.7a Expressed values • (define-datatypeexpvalexpval? (num-val (num number?)) (bool-val (boolboolean?)))
Fig 3.7b Expressed values • (define expval->num (lambda (val) (cases expvalval (num-val (num) num) (else (report-expval-extractor-error ’numval)))))
Fig 3.7c Expressed values • (define expval->bool (lambda (val) (cases expvalval (bool-val (bool) bool) (else (report-expval-extractor-error `boolval)))))