1 / 8

Stat 35b: Introduction to Probability with Applications to Poker Outline for the day:

Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: Uniform random variables and R Kaplan vs. Gazes, More counting problems Express, implied and reverse implied odds Yang vs. Kravchenko.   u    u . Uniform Random Variables and R

Télécharger la présentation

Stat 35b: Introduction to Probability with Applications to Poker Outline for the day:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: Uniform random variables and R Kaplan vs. Gazes, More counting problems Express, implied and reverse implied odds Yang vs. Kravchenko  u   u 

  2. Uniform Random Variables and R Continuous random variables are often characterized by their probability density functions (pdf, or density): a function f(x) such that P{X is in B} = ∫B f(x) dx . Uniform: f(x) = c, for x in (a, b). = 0, for all other x. [Note: c must = 1/(b-a), so that ∫ab f(x) dx = P{X is in (a,b)} = 1.] (For teams & examples for hw & computer projects, see http://www.stat.ucla.edu/~frederic/35b/F09/diamond1.txt )

  3. 2) Poker After Dark: Kaplan vs. Gazes 3) More counting problems -- How likely is it to make 4-of-a-kind? 1 in ___ ? -- What about the probability of flopping 4-of-a-kind? -- What about the prob. of flopping 4-of-a-kind, given that you have a pocket pair? -- Is it less likely than … * flopping an ace-high flush? * flopping a straight-flush?

  4. Suppose you’re all in next hand, no matter what cards you get. P(eventually make 4-of-a-kind)? [including case where all 4 are on board] Trick: just forget card order, and consider all collections of 7 cards. Out of choose(52,7) different combinations, each equally likely, how many of them involve 4-of-a-kind? 13 choices for the 4-of-a-kind. For each such choice, there are choose(48,3) possibilities for the other 3 cards. So, P(4-of-a-kind) = 13 * choose(48,3) / choose(52,7) ~ 0.168%, or 1 in 595. P(flop 4-of-a-kind) = 13*48 / choose(52,5) = 0.024% = 1 in 4165. P(flop 4-of-a-kind | pocket pair)? No matter which pocket pair you have, there are choose(50,3) possible flops, each equally likely, and how many of them give you 4-of-a-kind? 48. (e.g. if you have 7 7, then need to flop 7u 7 x, & there are 48 choices for x) So P(flop 4-of-a-kind | pp) = 48/choose(50,3) = 0.245% = 1 in 408.

  5. P(flop an ace high flush)? [where the ace might be on the board] -- 4 suits -- one of the cards must be an ace. choose(12,4) possibilities for the others. So P(flop ace high flush) = 4 * choose(12,4) / choose(52,5) = 0.0762%, or 1 in 1313. P(flop a straight flush)? -- 4 suits -- 10 different straight-flushes in each suit. (5 high, 6 high, …, Ace high) So P(flop straight flush) = 4 * 10 / choose(52,5) = 0.00154%, or 1 in 64974.

  6. 4) Express, implied, and reverse implied odds. From previous lecture: to call an all-in, need P(win) > B ÷ (B+pot). Expressed as an odds ratio, this is sometimes referred to as pot odds or express odds. If the bet is not all-in & another betting round is still to come, need P(win) > wager ÷ (wager + winnings), where winnings = pot + amount you’ll win on later betting rounds, wager = total amount you will wager including the current round & later rounds, assuming no folding. The terms Implied-odds / Reverse-implied-odds describe the cases where winnings > pot or where wager > B, respectively.

  7. 5. Yang / Kravchenko. Yang A 10u. Pot is 19million. Bet is 8.55 million. Needs P(win) > 8.55 ÷ (8.55 + 19) = 31%. vs. AA: 8.5%. AJ-AK: 25-27%. KK-TT: 29%. 99-22: 44-48%. KQs: 56%. Bayesian method: average these probabilities, weighting each by its likelihood.

  8. Yang / Kravchenko. Yang A 10u. Pot is 19.0 million. Bet is 8.55 million. Suppose that, averaging the different probabilities, P(Yang wins) = 30%. And say Yang calls. Let X = the number of chips Kravchenko has after the hand. What is E(X)? [Note, if Yang folds, then X = 19.0 million for sure.] E(X) = ∑ [k * P(X=k)] = [0 * 30%] + [27.55 million * 70%] = 19.285 million.

More Related