1 / 54

And Intelligent Life in the Universe

The Occurrence of Planets and Mass-Radius Relation from Kepler. And Intelligent Life in the Universe. Keck. Kepler. Geoff Marcy University of California. Thanks to: Shay Zucker Amiel Sternberg. Tel Aviv 7 December 2012. The Occurrence of Planets and Mass-Radius Relation

iokina
Télécharger la présentation

And Intelligent Life in the Universe

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Occurrence of Planets and Mass-Radius Relation from Kepler And Intelligent Life in the Universe Keck Kepler Geoff Marcy University of California Thanks to: Shay Zucker Amiel Sternberg Tel Aviv 7 December 2012

  2. The Occurrence of Planets and Mass-Radius Relation from Kepler And Intelligent Life in the Universe Keck Kepler Thanks to: Shay Zucker Amiel Sternberg Tel Aviv 7 December 2012 TseviMazeh

  3. Acknowledgements Kepler’s Heavy Lifters William Borucki David Koch Stephen Bryson Jason Rowe Roger Hunter Marcie Smith Susan Thompson Bruce Clark Rob Lewis Guillermo Torres Francois Fressin Jean-Michel Désert Lars Buchhave Sam Quinn Dan Fabrycky Debra Fischer DimitarSasselov Jon Jenkins Mike Haas Doug Caldwell Jeff Kolodziejcak Martin Still Shawn Seader Jie Li David Charbonneau David Ciardi Chris Burke Leslie Rogers Martin Still Martin Stumpe Peter Tenebaum LucianneWalkowicz Bill Cochran Mike Endl Natalie Batalha Thomas Gautier Steve Howell Charlie Sobeck TseviMazeh David Latham Fergal Mullally Joe Twicken Elisa Quintana Ron Gilliland Eric Ford Elliott Horsch Tom Barclay Jessie Christiansen Jack Lissauer

  4. Acknowledgements Kepler’s Heavy Lifters William Borucki David Koch Stephen Bryson Jason Rowe Roger Hunter Marcie Smith Susan Thompson Bruce Clark Rob Lewis Guillermo Torres Francois Fressin Jean-Michel Désert Lars Buchhave Sam Quinn Dan Fabrycky Debra Fischer DimitarSasselov Jon Jenkins Mike Haas Doug Caldwell Jeff Kolodziejcak Martin Still Shawn Seader Jie Li David Charbonneau David Ciardi Chris Burke Leslie Rogers Martin Still Martin Stumpe Peter Tenebaum LucianneWalkowicz Bill Cochran Mike Endl Natalie Batalha Thomas Gautier Steve Howell Charlie Sobeck TseviMazeh David Latham Fergal Mullally Joe Twicken Elisa Quintana Ron Gilliland Eric Ford Elliott Horsch Tom Barclay Jessie Christiansen Jack Lissauer Special Thanks: Andrew Howard, Lauren Weiss, Howard Isaacson, Jason Rowe, John Johnson

  5. 2300 Small Exoplanets Jupiter-size Neptune-size Size Relative to Earth Earth-size Earth analogs Orbital Period in days Extended mission domain

  6. 2300 Small Exoplanets Jupiter-size Neptune-size Size Relative to Earth Earth-Size Close-in Earth-size Earth analogs Orbital Period in days Extended mission domain

  7. Brightness Kepler: Hundreds of Earth-size Planets– in Tight Orbits 0.87 R P = 6.098 days + + Multiple Transits yield sufficient S/N Ratio for detection. Data binning yields obvious transit signatures Brightness 1.03 R P = 19.577 days Brightness Francois Fressin et al. 2012

  8. 2300 Small Exoplanets Jupiter-size Neptune-size Size Relative to Earth R=1-4 REarth - Not in S.S. - Interior: Rock + ? - Formation ? Earth-size Earth analogs Orbital Period in days Extended mission domain

  9. Define Planet Occurrence For each RPL and Period:

  10. Define Planet Occurrence For each RPL and Period:

  11. Define the Stellar Domain:Stellar Parameters and SNR of Transit Stellar Domain: FGK Main Sequence Teff = 4100 – 6100 K log g = 4.0 – 4.9 Kepmag < 15 mag Target Star Parameters: Teff=4100-6100 K, log g=4.0-4.9, Kepmag<15

  12. Define the Survey Domain:Stellar Parameters and SNR of Transit Stellar Domain: FGK Main Sequence Teff = 4100 – 6100 K log g = 4.0 – 4.9 Kepmag < 15 mag Note: Only 59,000 Kepler Target stars meet these stellar criteria Target Star Parameters: Teff=4100-6100 K, log g=4.0-4.9, Kepmag<15

  13. Define the Survey Domain:Stellar Parameters and SNR of Transit Stellar Domain: FGK Main Sequence Teff = 4100 – 6100 K log g = 4.0 – 4.9 Kepmag < 15 mag Note: Only 59,000 Kepler Target stars meet these stellar criteria SNR Threshold of Transit: 10 Demand SNR > 10 in Quarter 3 Target Star Parameters: Teff=4100-6100 K, log g=4.0-4.9, Kepmag<15

  14. Define the Survey Domain:Stellar Parameters and SNR of Transit Stellar Domain: FGK Main Sequence Teff = 4100 – 6100 K log g = 4.0 – 4.9 Kepmag < 15 mag Note: Only 59,000 Kepler Target stars meet these stellar criteria SNR Threshold of Transit: 10 • SNR Depends on • planet radius • # of transits • Photometric noise Demand SNR > 10 in Quarter 3 Target Star Parameters: Teff=4100-6100 K, log g=4.0-4.9, Kepmag<15

  15. Number of Target Stars Capable of AchievingSNR > 10 in Quarter 3 Target Star Parameters: Teff=4100-6100 K, log g=4.0-4.9, Kepmag<15 mag Planet Radius [REarth] 15 Howard, Marcy, Kepler Team. (2011)

  16. Define Planet Occurrence For each RPL and Period:

  17. 17 Howard, Marcy, Kepler Team (2011)

  18. 18 Howard, Marcy, Kepler Team (2011)

  19. 19 Howard, Marcy, Kepler Team (2011)

  20. 20 Howard, Marcy, Kepler Team (2011)

  21. Focus on a single domain In Period and Radius 21 Howard, Marcy, Kepler Team (2011)

  22. Naïve: Count the planets in this domain. Focus on a single domain In Period and Radius 22 Howard, Marcy, Kepler Team (2011)

  23. Naïve: Count the planets in this domain. Best: Augment each planet by its # of “inclined” twins: a/RSTAR . Focus on a single domain In Period and Radius 23 Howard, Marcy, Kepler Team (2011)

  24. Augment Each Transiting Planet by the # of (undetected) Inclined Twins a RSTAR # Planets at All Inclinations = a / RSTAR

  25. Naïve: Count the planets in this domain. Best: Augment each planet by # of “inclined” twins: a/RSTAR: Focus on a single domain In Period and Radius 25 Howard, Marcy, Kepler Team (2011)

  26. Naïve: Count the planets in this domain. Best: Augment each planet by # of “inclined” twins: a/RSTAR: Typically 5-20. Focus on a single domain In Period and Radius 26 Howard, Marcy, Kepler Team (2011)

  27. Define Planet Occurrence within each cell:

  28. Distribution of Planet Radii For Orbital Periods < 50 Days 10% of stars have Planets 2.0-2.8 REarth. 8% of G stars have a planet of 2.0-2.8 REarth 1% of stars have Planets 8-11 REarth. Howard, Marcy, Kepler Team, as of Sept. 2011

  29. Howard et al. Analysis:Redone with Planet Candidatesthrough Quarter 6from Batalha et al. 2012

  30. Distribution of Planet Sizes Is Decline to 1 REarth Real ? Petigura, Howard, Marcy, Kepler Team - Nov 2012

  31. 2300 Small ExoplanetsBatalha et al. 2012 Jupiter-size Neptune-size Size Relative to Earth Earth-Size: Not many… Earth-size Earth analogs Orbital Period in days Extended mission domain

  32. Distribution of Planet Sizes Is Decline to 1 REarth Real ? Or is it due to Incompleteness in The Kepler pipeline? SNR (SES) ~ 1 for R=1 REarth Petigura, Howard, Marcy, Kepler Team - Nov 2012

  33. New Kepler Pipelineby Erik Petigura • New CBVs • New Search • Algorithm

  34. Petigura’sKeplerPiplineAdopted CDPP Threshold: “Best 12,000 Kepler Stars” Best 12000

  35. Planets Detectedin “Best 12000” Kepler StarsPetigura et al. 2013 • Now: • Assess completeness • Compute occurrence • ala Howard et al.

  36. Completeness Measurement Inject Mock Transits into Actual Kepler Raw photometery Detection Completeness: > 80% - Radius = 1.2 – 4 REarth - Period > 50 d Petigura et al. 2013

  37. Planets Detectedin “Best 12000” Kepler StarsPetigura et al. 2013 Now make Same corrections As in Howard et al.

  38. Fressin et al. Occurrence Occurrence is Flat Shortward of 2 REarth Agreement with Petigura & Howard

  39. Mass-Radius Diagram Planet Mass-Radius Diagram 104 20c 246 20b 321 20c 20c

  40. Kepler Planet Masses and RadiiKOI-94

  41. KOI-94 Photometry:4 Transiting Planets P=3.74 d R=1.7 RE P=10.42 d R=4.3 RE P=22.34 d R=11.3 RE P=54.32 d R=6.56 RE Lauren Weiss et al. 2013

  42. Doppler Measurements of KOI-94:Masses for two planets.Only Upper limits for two. Lauren Weiss et al. 2013

  43. 135 Exoplanets with Mass and Radius

  44. Planet Radius vs Mass • Two mass domains: • MCRIT = 150 MEARTH • Affect of stellar Flux • on Planet: • M>150 MEARTH: Bloated • M<150 MEARTH: Smaller Weiss, Marcy, et al. 2013

  45. Planet Radius vs Mass Planet Radius vs Mass Weiss, Marcy, et al. 2013

  46. Planet Radius vs Mass Planet Radius vs Mass Constant Density: R ~ M1/3 Radius rises faster than solid interior! Implication: Admixture of more volatiles with Increasing mass. i.e. Water or H + He.

  47. Planet Radius vs Mass Planet Radius vs Mass

  48. Planet Radius vs Mass Planet Radius vs Mass Electron Degeneracy: R ~ M-1/3 Radii rises faster Than e- degeneracy. Implication: Admixture of more volatiles with Increasing mass. i.e. Water or H + He.

More Related