1 / 11

PERAMALAN PERISTIWA HIDROLOGI

PERAMALAN PERISTIWA HIDROLOGI. Adhi Muhtadi, ST., SE., MSi. Peristiwa Hidrologi. Hujan Banjir, Banjir tergantung oleh: pola, sifat & karakteristik daerah aliran Hujan max & banjir max mempunyai masa ulang (T) sangat lama : 1000 sd 10000 tahun

iona
Télécharger la présentation

PERAMALAN PERISTIWA HIDROLOGI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PERAMALAN PERISTIWA HIDROLOGI Adhi Muhtadi, ST., SE., MSi.

  2. Peristiwa Hidrologi • Hujan Banjir, Banjir tergantung oleh: • pola, • sifat & • karakteristik daerah aliran Hujan max & banjir max mempunyai masa ulang (T) sangat lama : 1000 sd 10000 tahun Oleh krn itu diperlukan : EXTRAPOLASI DATA

  3. Masa Ulang (T) • Adl: Interval waktu rata2 dr suatu perist akan dimulai/dilampaui 1x • Masa ulang = return period = periodicity = recurrence interval • Misal: Dlm pengamatan 100 thn terjadi rata2 4x perist hidrologi, mk masa ulang (T) adl : 25 thn • Ingat: BUKAN berarti setiap 25 thn sekali

  4. Kemungkinan Kejadian (p) • Kemungk suatu kejad besarnya disamai/dilampaui: p = 1/T • Perist tdk disamai/tdk dilampaui: p’ = 1-p • P(X > x)n = 1 – (1 – 1/1T)n • Misal: p(X > Q20)3= 1 – (1 – 1/20)3 = 0,143 = 14,3 % • Peluang 1% dr banjir 200 thnan akan tjd berapa thn yg akan datang? 0,01 = 1 – (1 – 1/200)n n = 2, jadi 2 th yad banjir 200 thnan akan tjd dg peluang 1 %.

  5. Utk peluang 8% dr banjir 200 thnan tdk akan tjd dlm brp thn yad ? p(X > Q200)n = 1 – 0,08 = 0,92 Jadi 0,92 = 1 – (1 – 1/200)n n = 503, berarti 500 thn yad banjir 200 thnan : * tdk akan tjd dgn peluang 8%, sebaliknya * banjir akan tjd dgn peluang 92%.

  6. n = log (1 – p (X > x)n log (1 – 1/T) • T = [ 1 – (1 – p (X > x)n) 1/n]-1

  7. Extrapolasi Data Pers. Weibull: T = (n + 1) / m, n = juml kejadian (data) m = no. ranking Versi lain: • Pers California: T = n / m • Pers Hazen : T = 2n / (2m – 1) • Pers Chegedayev: T = n + 0,4 /(m – 0,3)

  8. Metode Gumbel Asumsi: • Dist variabel2 hidrologi tak terbatas shg digun harga2 ekstrim max • Dist dr harga2 extrim yg dipilih dr n sample mendekati suatu bentuk batas kalau sample2nya meningkat • Harga T Gumbel = T Weibull = pers 10.8

  9. Pers Extrapolasi Gumbel: XT = 1/a YT + x – 1/a . Yn K = (YT – Yn )/ Sn σ/ Sn = 1/a

  10. Contoh Pers Dist Gumbel: • Banyak data : n = 15, m = 15 • p = n/m+1 = 1/15 +1= 0,0625 • y = - ln ln 1/p = -ln ln 1/0,0625 = -1,0198 • y2 = 1,0400 • Yn = tot y/n = 0,5128 • Sn = (tot y2 – Yn . tot y) / 15 = 1,0206

  11. TERIMA KASIH Adhi Muhtadi, ST., SE., MSi.

More Related