1 / 14

Noise in Communication Systems

Noise in Communication Systems. Professor Z Ghassemlooy Electronics and IT Division School of Engineering Sheffield Hallam University U.K. Contents. Interference Types of noise Electrical noise Gaussian noise White noise Narrow band noise Noise equivalent bandwidth

ishi
Télécharger la présentation

Noise in Communication Systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Noise in Communication Systems Professor Z Ghassemlooy Electronics and IT Division School of Engineering Sheffield Hallam University U.K. Z. Ghassemlooy

  2. Contents • Interference • Types of noise • Electrical noise • Gaussian noise • White noise • Narrow band noise • Noise equivalent bandwidth • Signal-to-noise ratio Z. Ghassemlooy

  3. Interference Is due to: • Crosstalk • Coupling by scattering of signal in the atmosphere • Cross-polarisation: two system that transmit on the same frequency • Interference due to insufficient guard bands or filtering Z. Ghassemlooy

  4. Types of Noise 1- Manmade (artificial):These could be eliminated via better design - Machinery - Switches - Certain types of lamps 2- Natural - Atmospheric noise: causing crackles on our radios - Cosmic noise (space noise): Noise in Electrical Components • Thermal noise: Random free electron movement in a conductor (resistor) due to • thermal agitation • Shot noise: Due to random variation in current superimposed upon the DC value. • It is due to variation in arrival time of charge carriers in active devices. • Flicker noise: Observed at very low frequencies, and is thought to be due to • fluctuation in the conductivity of semiconductor devices. Z. Ghassemlooy

  5. p(vn) 0.4/ vn -3 - 0 2 3 -2  Gaussian Noise Each noise types outlined before (except flicker noise) is the result of a large number of statistically independent and random contributions. The distribution of such random noise follow a Gaussian distribution with zero mean. Where 2 is the variance of noise voltage vn For zero mean, normalised noise power or mean square voltage: Probability density function of zero mean and standard deviation  Z. Ghassemlooy

  6. vn t t+ t White Noise The time-average autocorrelation function of the noise voltage is: Assumptions: • vn(t+) is random value that does not depend on vn(t). • The above condition holds no matter how small  is, provided it is not zero. White noisew(t) (i.e perfect randomness, which can not be attained in real systems) Z. Ghassemlooy

  7. Sw(f) f Sw(f) o  f White Noise - cont. The autocorrelation of white noise is: Rw(t) is a zero width of height Pn with an area under the pulse = o/2 o/2 Double-sided power spectral density Single-sided power spectral density Z. Ghassemlooy

  8. White noise w(t)Sw(f) Narrow band noise vn(t) Sv(f) Sv(f) Sw(f) o f o B Sv(f) f o f fc-B/2 fc+B/2 fc-B/2 fc+B/2 fc fc Narrowband Noise Communication Receiver H(f) B Ideal LPF Ideal BPF Z. Ghassemlooy

  9. White noise w(t)Sw(f) Narrow band noise vn(t) Sv(f) o o Sw(f) fc-B/2 fc+B/2 fc Sv(f) f f fc-B/2 fc+B/2 fc Narrowband Noise - cont. Bandpass Filter H(f) 1 Bandlimited noise x(t) and y(t) have the same power as the band pass noise vn(t) Z. Ghassemlooy

  10. y(t) Quadrature component R(t) (t) x(t) Inphase component Narrowband Noise - Phasor diagram Bandlimited noise and x(t) and y(t) have the same power as the band pass noise vn(t) Z. Ghassemlooy

  11. Sv(f) Ideal filter o w(t) vn(t) Beq Noise Equivalent Bandwidth • The power Pn of the band limited noise vn(t) is given bt the area under its power spectral density as: Realisable filter H(f) Noise equivalent bandwidth We replace realisable filter H(f) with a unit-gain ideal filter of bandwidth Beq. Z. Ghassemlooy

  12. R = 300  Vin(t) Vout(t) C = 132.63 nF Noise - Example: a simple RC low-pass filter A simple RC low-pass filter is shown in figure below: • Find the noise equivalent bandwidth Beq? • Find the 3-dB bandwidth B of the filter? • Calculate the noise power Pn at its output when connected to a matched antenna • of noise temperature Ta = 80 K? (Assuming the filter is noise free) • How much error is incurred in noise power calculation by using the 3-dB • bandwidth in place of the Beq? Z. Ghassemlooy

  13. Solution • The transfer function of the filter is: Amplitude response where Phase response Equivalent bandwidth Note: = 2f and a = 2RC The form of integral suggest the to use substitution of af = tan  Z. Ghassemlooy

  14. So & No Incoming signal Output signal SNRo SNRi White noise w(f) System Signal-to-Noise Ratio (SNR) Si Ni BPF (fc) Demodulator (Gd) + The SNR at the demodulator output is: Where - SNRi is the input signal (modulated carrier) to noise ratio - Gd is the demodulator gain. - Si = Total power in the received modulated signal - So = Power in the recovered message signal m(t) - Band limited noise power Ni = Pn = 2 Z. Ghassemlooy

More Related