1 / 35

Rendering Problem

Rendering Problem. L ászló Szirmay-Kalos. Image synthesis: illusion of watching real world objects. monitor. Tone mapping. pixel. S. f r ( ’ , x,  ). W e ( x , ). . L e ( x , ). Color perception. . . Measuring the light: Flux. Power going through a boundary [Watt]

ivrit
Télécharger la présentation

Rendering Problem

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. RenderingProblem László Szirmay-Kalos

  2. Image synthesis: illusion of watching real world objects monitor Tone mapping pixel S fr (’, x, ) We(x,)  Le(x,) Color perception  

  3. Measuring the light: Flux • Power going through a boundary [Watt] • Number of photons • Spectral dependence: F [, +d] F ()

  4. g() r() b() 400 500 600 700 Color perception   perception: r, g, b  r, g, b

  5. Perception of non-monochromatic light F ()  r=F () r () d    F (i) r (i) i g=F () g () d  b =F () b () d 

  6. Representative wavelengths Fe() F ()   Light propagation: Linear functional: F () = T(Fe()) r=F () r () d  =  F (i) r (i) i = r= T(Fe( i))r (i) i

  7. Measuring the directions: 2D 2D case Direction: angle  from a reference direction Directional set: angle [rad] arc of a unit circle Size: length of the arc Total size: 2 

  8. Measuring the directions: 3D Direction: angles , from two reference directions Directional set: solid angle [sr] area of a unit sphere Size: size of the area Total size: 4  

  9. Size of a solid angle d d d dw = sin d d sin d

  10. Solid angle in which a surface element is visible dA  r dw dA cos  dw = r2

  11. Radiance: L(x,w) • Emitted power of a unit visible area in a unit solid angle [Watt/ sr/ m2] w dw dF  L(x,w) = dF / (dA cos dw) dA

  12. Light propagation between two infinitesimal surfaces: Fundamental law of photometry ’  r L dw dA dA’ dF emitter receiver dA cos  dA’ cos ’ dF = LdA cos dw = L r2

  13. Symmetry relation of the source and receiver dA cos  dA’ cos ’ dF = L =LdA’ cos ’dw’ r2 dw’ ’  r dA dw’ dA’ dF emitter receiver

  14. Light-surface interaction w dw w’ x Probability density of the reflection w(w’,x,w) dw = Pr{photon goes to w  dw | comes from w’}

  15. Reflection of the total incoming light w dw Fin (dw’) Fref (dw) dw’ w’ x Fref (dw) = Fe (dw) +  Fin (dw’) w(w’,x,w)dw

  16. Rewriting for the radiance Fref (dw)= LdA cos dw Fe(dw)= LedA cos dw Fin(dw’)= LindA cos ’dw’ Visibility function h(x,-w) L(x,w) ’ Lin =L(h(x,-w’),w’) w  ’ x

  17. Substituting and dividing bydA cos dw w(’,x,) cos  L(x,w)=Le(x,w)+L(h(x,-w’),w’) cos ’dw’ w ’ w(’,x,) cos   = fr (’,x,) x Bidirectional Reflectance Distribution Function BRDF: fr (’,x,) [1/sr]

  18. Rendering equation L(x,w)=Le(x,w)+L(h(x,-w’),w’) fr(’,x,) cos’dw’ L(h(x,-w),w) h(x,-w) L(x,w) ’ ’ w x fr (’,x,) L = Le + tL

  19. Rendering equation • Fredholm integral equation of the second kind • Unknown is a function • Function space: Hilbert space, L2 space • scalar product: L = Le + tL <u(x,w),v(x,w)> = S u(x,w) v(x,w) cos dwdx

  20. Function space • Linear space (vector space) • addition, zero, multiplication by scalars • Space with norms • ||u||2 = <u,u >, ||u||1 = <|u|,1>, • ||u|| = max|u|, • Hilbert space: scalar product: • L2 space: finite square integrals

  21. Measuring the light: radiance • Sensitivity of a measuring device: We(y,w’) L(y,w’)  ’ Light beam reaches the device: 0/1 „probability” We(y,w’): effect of a light beam of unit power emitted at y in direction w’ Scaling factor

  22. Measured values • Single beam : F(dw’) We(y,w’) = L(y,w’)cos dAdw’ We(y,w’) • Total measured value:SWe(y,w’)dF=S L(y,w’)We(y,w’) cosdw’dy = < L, We > = ML

  23. Simple eye model Pupil: e Pupil: e Wp  Wp y ’ Lp pixel ’ y F r Computer screen F Real world Lp=F / (e cosqeWp) C=1 /(e cosqeWp)if y is visible in Wp and ’ points from y to e 0 otherwise We(y,’)=

  24. Simple eye model: pinhole camera Pupil: e dw’= decose /r2 dy= r2dp/ cos Wp  y ’ ’ y Pinhole camera: e, ’ 0 r Lp= ML =S L(y,w’)We(y,w’) cosdw’dy  yL(y, w’) C· cos·’ · dy = p L(h(eye, wp ),-wp) C ·cos ·e cose /r2 · r2dp/cos = p L(h(eye, wp ),-wp) ·Ce cose dp Proportional to the radiance! Camera constant: 1 /Wp

  25. Why radiance Lp= pL(h(eye, wp ),-wp) /Wpdp The color of a pixel is proportional to the radiance of the visible points and is independent of the distance and the orientation of the surface!! F=LDA cosdw /r2 pixel DA  r2 / cos r

  26. Integrating on the pixel Sp pixel p p f dp= dp cos p/|eye-p|2 = dp cos3p/f 2 dp/Wp dp / Sp

  27. Integrating on the visible surface pixel  y r dp= dy cos /|eye-y|2 = dy g(y)

  28. Measuring function F= S L(y,w’)We(y,w’) cosdw’dy = = pL(h(eye, wp ),-wp) /Wpdp= = SL(y,w’) · cos /|eye-y|2 /Wpdy (w-wyeye)/|eye-y|2 /Wpif y is visible in the pixel 0 otherwise We(y,’)= g(y)

  29. Potential: W(y,w’) • The direct and indirect effects in a measuring device caused by a unit beam from y at ’ • The product of scaling factor C and the probability that the photon emitted at y in ’ reaches the device w’ y

  30. Duality of radiance and potential • Light propagation = emitter-receiver interaction • radiance: intensity of emission • potential: intensity of detection

  31. Potential equation w’ y C · Pr{ detection} = C · Pr{ direct detection} + C · Pr{ indirect detection} Pr{ indirect detection} =  Pr{ detection from the new point | reflection to w}· Pr{ reflection to w} dw

  32. Potential equation W(y,w’)=We(y,w’)+W(h(y,w’),w) fr(’,h(y,w’),)cosdw y W(y,w’) w’ q fr (’,h(y,w’),) h(y,w’) W = We + ’W

  33. Measuring the light: potential w’ y Fe(dw’) Measured values of a single beam = Fe(dw’)W(y,w’) = Le(y,w’)cos dAdw’ W(y,w’) Total measured value = M’W= S W(x,w)dFe=S Le(x,w) W(x,w) cosdwdx = < Le , W>

  34. Operators of the rendering and potential equations • Measuring a single reflection of the light: • Adjoint operators: F1=< Le , W> = < Le , ’We > F1=< L, We> = < Le ,We > < Le , ’We > = < Le ,We >

  35. Rendering problem: <S,Le,We ,fr> pixel S fr (’, x, ) Le(x,) We(x,) F= S We(x,w) dF=S L(x,w) We(x,w) cos dwdx F= ML

More Related