Download
slide1 n.
Skip this Video
Loading SlideShow in 5 Seconds..
BILANGAN BULAT (lanjutan 2) PowerPoint Presentation
Download Presentation
BILANGAN BULAT (lanjutan 2)

BILANGAN BULAT (lanjutan 2)

178 Vues Download Presentation
Télécharger la présentation

BILANGAN BULAT (lanjutan 2)

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. BILANGAN BULAT (lanjutan 2)

  2. 9.9 International Standard Book Number (ISBN) Buku yang diterbitkanolehpenerbitresmibiasanyadisertaidengankode ISBN yang terdiridari 10 karakter. ISBN terdiriatas 4 bagiankode, yaitu : Kode yang mengidentifikasibahasa, Kodepenerbit, Kode yang diberikansecaraunikpadabukutsb., Karakteruji (dapatberupangkaatauhuruf X untukmempresentasikanangka 10. Karaktewrujidigunakanuntukmemvalidasi ISBN, tepatnyauntukmendeteksikesalahanpadakarakter ISBN ataukesalahankarenaperpindahanangka-angkanya.

  3. Karakterujidipilihsedemikianrupa, sehingga : xiadalahkarakteruji yang kei didalamkode ISBN. Untukmendapatkankarakteruji, kitacukupmenghitung:

  4. Untukkode ISBN 0–3015–4561–8, angka 0 adalahkodekelompoknegaraberbahasaInggris, 3015 adalahkodepenerbit, 4561 adalahkarakterunikuntukbuku yang diterbitkanolehpenerbittersebut, dan 8 adalahkarakteruji. Karakterujididapatmelaluiperhitungan, 1(0)+2(3)+3(0)+4(1)+5(5)+6(4)+7(5)+8(6)+9(1)=151 Jadikarakterujinyaadalah 151 mod 11 = 8

  5. Kode ISBN jugaharusmemenuhi, dan 231 mod 11 = 0 atau 231  0 (mod 11) Contoh 9.4 Nomorsebuahbukuterbitanpenerbit Indonesia adalah 979–939p–04–5. Tentukanp. Penyelesaian:

  6. Diketahuikarakteruji ISBN adalah 5. Hal iniberarti: Hitung: = 9 + 14 + 27 + 36 + 15 + 54 + 7p + 0 + 36 = 191 + 7p Jadi (191 + 7p) mod 11 = 5  191 + 7p = 11 k + 5 1(9)+2(7)+3(9)+4(9)+5(3)+6(9)+7(p)+8(0)+9(4)

  7. Nilaipharusmemenuhi 0  p  9

  8. Latihan Nomorsebuahbukuterbitanpenerbit Indonesia adalah 0–07–289p05–0. Tentukanp. Penyelesaian: = 1(0)+2(0)+3(7)+4(2)+5(8)+6(9)+7(p)+8(0)+9(5) = 0 + 0 + 21 + 8 + 40 + 54 + 7p + 0 + 45 = 168 + 7p Jadi (168 + 7p) mod 11 = 0  168 + 7p = 11 k + 0

  9. Nilaipharusmemenuhi 0  p  9. Jadi p = 9

  10. 9.10 PembangkitBilanganAcakSemu Bilanganacak (random) banyakdigunakanpada program komputer, misalnyauntuk program simulasi (misalnyamensimulasikanwaktukedatangannasabahdi bank, pompabensin, danseterusnya), program kriptografi, aplikasistatistik, dansebagainya. Tidakadakomputasi yang benar-benarmenghasilkanderetbilanganacaksecarasempurna. Bilanganacak yang dihasilkandenganrumus-rumusmatematikaadalahbilanganacaksemu (pseudo), karenapembangkitanbilangannyadapatdiulangkembali.

  11. PembangkitderetbilangansemacamitudisebutPembangkitBilanganAcakSemu (Pseudo Random Number Generator) atauPRNG. Salahsatumetodeuntukmembangkitkanbilanganacakadalahdenganpembangkitbilanganacakkongruenlanjar (Linear Congruential Generator) ataudisingkatPRNG yang berbentuk, xn = (axn-1 + b) mod m xn= bilanganacakke –n darideretnya xn-1= bilanganacaksebelumnya a = faktorpengali b = increment m = modulus (a, b, m semuanyakonstanta)

  12. Kuncipembangkitadalah x0 yang disebutumpanatauseed. LCG mempunyaiperiodetidak lebihbesardarim. Jikaa, b, danmdipilihsecaratepat (misalnyabseharusnyarelatif prima terhadapm), makaLCGakanmempunyaiperiodemaksimalm – 1. Contoh 9.5 BangkitkanbilanganacakdenganmenggunakanLCG. m = 17, a = 7, b = 11, danx0 = 0.

  13. Penyelesaian Persamaan LCG berbentuk, xn = (axn-1 + b) mod m  xn = (7xn-1 + 11) mod 17 Perhitunganselanjutnya, x1 = (7xn-1+ 11) mod 17 = (7(0) + 11) mod 17 = 11 x2 = (7xn-1+ 11) mod 17 = (7(11) + 11) mod 17 = 3 dst…..

  14. Terlihatpada n = 16 dan x16 = x0 , makabilangan acakberikutnya (x17 , x18 , dst.)

  15. Latihan Sembilan angkapertamadarikode ISBN sebuah bukuadalah 0–07–053965. Tentukankarakteruji bukutersebut! 2. ISB sebuahbukutentangalgoritmaadalah 0–471–55p80–8. Berapanilaip? 3. Tunjukkanbagaimanasekumpulan data dengan kunci-kuncisebagaiberikut: 714, 631, 26, 373, 906, 509, 2032, 42, 4, 136, 1028 ditempatkandalam memoridenganfungsihash h(k) = k mod 17. 4. Tentukanbilanganacak yang dihasilkanoleh xn+1 = (4xn + 1) mod 7 denganumpan x0 = 7

  16. S e l e s a i