1 / 27

Numbering Systems

Numbering Systems. Lecture1. Number Systems and Arithmetic’s. Notes: The decimal number system is said to be of Base (Radix), 10 because it uses 10 digits The Binary number system is said to be of Base (Radix), 2 because it uses 2 digits

Télécharger la présentation

Numbering Systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Numbering Systems Lecture1

  2. Number Systems and Arithmetic’s Notes: The decimal number system is said to be of Base (Radix), 10 because it uses 10 digits The Binary number system is said to be of Base (Radix), 2 because it uses 2 digits The Octal number system is said to be of Base (Radix), 8 because it uses 8 digits The Hexadecimal number system is said to be of Base (Radix), 16 because it uses 16 digits

  3. 1-2 Radix –R Representation To convert any number with radix R to decimal numbering system we apply the following formula

  4. Conversion of Decimal To ANY Base ( R) Integer Parts: Divide Number N by base R until quotient is 0. Remainder at EACH step is a digit in base R, from Least Significant digit to Most Significant digit. Fraction Part: Multiply the fraction number M by the base ( Radix) R, and collect the resulting integer , starting with most significant digit ( MSD)

  5. 1-2 Conversion From Decimal to Binary I- Integer Parts : Modulo division of decimal integer by 2 to get each bit , starting with (Least Significant Bit (LSB) ) Example : Convert the following decimal numbers to Binary numbers 1- (29)10 2-(53)10 3-(41)10 1: Division Remainder 29/2 1 LSB 14/2 0 7/2 1 3/2 1 1/2 1 MSB 0 (29)10 =(11101)2 2: (53)10 Division Remainder 53/2 1 LSB 26/2 0 13/2 1 6 /2 0 3 /2 1 1 /2 1 MSB 0 (53)10 =(110101)2

  6. 3 : (41)10 41/2 1 LSB 20/2 0 10/2 0 5 /2 1 2 /2 0 1 /2 1 MSB 0 (41)10 =(101001)2 II: Fraction Parts : Multiplication decimal fraction by 2, and collect resulting integers, starting with (Most Significant Bit (MSB)) Example: Convert the following decimal number into binary Number 1: (0.828125 )10 0.828125 x2 = 1+ 0.65625 1 MSB 0.65625 x 2 = 1+ 0.3125 1 0.3125 x 2 = 0+ 0.625 0 0.625 x 2 = 1+ 0.25 1 0.25 x 2 = 0+ 0.5 0 0.5 x 2 = 1+ 0 1 LSB (0.828125)10 =(0.110101)2

  7. 2: (41. 625 )10 =(41)10 + (0.625 )10 from the above example (41)10 is represented by (101001)2 while (0.625 )10 is 0.625 x 2 = 1+ 0.25 1 MSB 0.25 x 2 = 0+ 0.5 0 0.5 x 2 = 1+ 0 1 LSB (0.625 )10 = (0.101)2 so (41. 625 )10 = (101001.101)2

  8. 1-3 Binary To Decimal Conversion

  9. 1-4 Binary To Hexadecimal Conversion : Each Hex digit represents 4 bits. To convert a Hex number to Binary, simply convert each Hex digit to its four bit value.

  10. 1-5 Conversion from decimal numbering system to hexadecimal Numbering System • Integer Parts : Modulo division of decimal integer by 16 to get each digit , starting with (Least Significant digit (LSD) ) • Example : Convert the following decimal numbers to Hexadecimal numbers • 1- (29)10 2-(53)10 3-(32)10 4-(41)10 • 1: Division Remainder • 29/16 D LSD • 1 /16 1 MSD • 0 • (29)10 =(1D)16 • 2: (53)10 Division Remainder • 53/16 5 LSD • 3/16 3 MSD • 0 • (53)10 =(35)16 • 3: (32)10Division Remainder • 32/16 0 LSD • 2/16 2 MSD • 0 • (53)10 =(20)16

  11. 4: (41)10Division Remainder 41/16 9 LSD 2/16 2 MSD 0 (53)10 =(29)16 HW: (128)10=( )16 (267)10=( )16

  12. II: Fraction Parts : Multiplication decimal fraction by 16, and collect resulting integers, starting with (Most Significant Digit (MSD)) Example: Convert the following decimal number into Hexadecimal Number 1: (0.828125 )10 0.828125 x16 = 13+ 0.25 D MSD 0.25 x 16 = 4+0 4 LSD (0.828125)10 =(0.D4)16 2: (0.75)10 0.75*16=12+0 C 0*16= =0 (0.75)10=(0.C)16

  13. 1-6 Hexadecimal system to Decimal system Conversion

  14. 1-7 Conversion from decimal numbering system to Octal Numbering System • Integer Parts : Modulo division of decimal integer by 8 to get each digit , starting with (Least Significant digit (LSD) ) • Example : Convert the following decimal numbers to octal numbers • 1- (29)10 2-(53)10 3-(32)10 4-(41)10 • 1: Division Remainder • 29/8 5 LSD • 3/8 3 MSD • 0 • (29)10 =(35)8 • 2: (53)10 Division Remainder • 53/8 5 LSD • 6/8 6 MSD • 0 • (53)10 =(65)8 • 3: (32)10Division Remainder • 32/8 0 LSD • 4/8 4 MSD • 0 • (53)10 =(40)8

  15. II: Fraction Parts : Multiplication decimal fraction by 8, and collect resulting integers, starting with (Most Significant Digit (MSD)) Example: Convert the following decimal number into Hexadecimal Number 1: (0.828125 )10 0.828125 x8 = 6+ 0.625 6 MSD 0.625 x 8 = 5+0 5 LSD (0.828125)10 =(0.65)8 2: (0.75)10 0.75*8=6+0 6 0*8= =0 (0.75)10=(0.6)8

  16. 1-8 Binary to Octal Conversion

  17. 1-9 Octal To Decimal Conversion :

  18. Binary Arithmetic 1- Binary Addition: Example: 1111 0100 Carries 0000 0010 Carries 0011 1011 1011 1001 + 0111 1010 + 0100 0101 _________ _________ 1011 0101 1111 1110 1111 0000 Carries 1110 0000 0000.0001 Carries 1111 1001 0101 1000 1001.1001 + 0100 1000 + 0011 0011 0100.01 ---------------- ----------------------------- 1 0100 0000 1000 1011 1101.1101

  19. Two's Complement

  20. 2- Binary Subtraction I- Using 2’s complement: 1:- Add the 2’s complement . 2:- if the last carry =1 then the result is positive  disregard the last carry, otherwise (carry=0) the result is negative , the number is in the 2’s complement form Example 1: 3 11 11 11 -2 -10 01+1 + 10 --- ----- ------- ------- 1 1 01 carry =1  result positive =01

  21. Example 2: 9 1001 1001 1001 - 5 -0101 1010+1 + 1011 ------- --------- ----------- ---------- 4 1 0100 carry=1 positive result=0100 Example 3: 4 100 100 100 - 5 -101 010 +1 + 011 ----- ------- ---------- ------- -1 0 111 carry=0  Negative result (2’s complement form) 111 2’s comp. 000+1  - 001=-1 Example 4: 5 0101 0101 0101 - 9 - 1001 0110+1 + 0111 ------ --------- ----------- ---------- -4 0 1100 carry=0 negative result (2’s complement form) 1100 2’s comp. 0011+1  - 100= - 4

  22. Example (3): Using 2’s complement, subtract 1010100 – 1000011 X – Y X = 1010100 2’s complement of Y = + 0111101 Sum = 10010001 Discard end carry 27 = - 10000000 Answer: X - Y = 0010001 Example (4): Using 2’s complement, subtract 1000011 – 1010100 Y – X Y = 1000011 2’s complement of X = + 0101100 Sum = 1101111 No end carry. Answer: Y – X - (2’s complement of 1101111) = -0010001

  23. Bitwise Operators • & Bitwise AND1010 & 0011 = 0010 • | Bitwise inclusive OR1010 | 0011 = 1011 • ^ Bitwise exclusive OR1010 ^ 0011 = 1001 • << left shift 00000100 << 3 = 00100000 • >> right shift 00000100 >> 2 = 00000001

  24. Floating Point Representation • Fixed point representation , Number x=(14.89)10 • floating point representation , Number x= m* r e m= mantissa (+,-) r -1≤ m <1 r = radix e= exponent =(+,-) integer Decimal point adjustment ( Normalization) Number Normalized Form ( 1456.56)10 0.145656E4 (0.000035)10 0.35E-4 (101.11)2 0.10111 E (11)2 (0.0011)2 0.11 E (- 10)2

More Related