1 / 31

Geometric Motion Planning : Finding Intersections

Geometric Motion Planning : Finding Intersections. MichaelEClarke @ flickr. Motivation – Finding Intersections One -Dimensional Agents No simultaneous movement Simultaneous movement Two -Dimensional Agents Outlook. Motivation. Motivation. planning motions for mobile agents :

jane
Télécharger la présentation

Geometric Motion Planning : Finding Intersections

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Geometric Motion Planning:FindingIntersections

  2. MichaelEClarke @flickr Motivation – Finding Intersections One-Dimensional Agents • Nosimultaneousmovement • Simultaneousmovement Two-Dimensional Agents Outlook

  3. Motivation

  4. Motivation • planningmotionsfor mobile agents: • motion primitives • sensors • communication • here: agentsperformgeometric primitives • movetoanother agent • move on raybetweentwootheragents • move on a circle • whatcanweachievewiththis model? • intersectionpointoftrajectoriesoftwoagents

  5. FindingIntersections • twocurves C1 and C2 • twoagents A1and A2 • agent‘sminimumtraveldistanceisitsdiameter  discretesearchspace: integer grid A1 C1 C2 A2

  6. Bilder – fälle grid und einbettung FindingIntersections – Search Space One open, oneclosedcurve: Twoclosedcurves: Intersectionpoint=suche

  7. Findingintersections • searching on an infinite integer grid was consideredbyBaeza-Yates et al. (1993): • any online strategyforfinding a pointwithindistanceatmostk (in L1-metric) needsat least 2k²+O(k) steps • strategy NSESWSNWN: • visitspoints on diamondaroundorigin in distancek • requires 2k²+5k+2 steps Markiere diamonds, und 4k+3 für schicht k only 4k+3

  8. SearchCompetitivity • searching in the plane is not constantcompetitive • searchcompetitivityasqualitymeasure (Fleischer et al. 2008) • Wecomparethepathofthe online searchstrategy • NOT totheshortestpath • but tothebestpossible online searchpath • searchratiosr: • goal: sr(ALG) ≤ c∙sr(OPT)+a • ≤ constant  ALG searchcompetitive Folie zu serachcomp.? online strategy‘spathto p |Π(p)| ALG shortestpathto p suppG |sp(p)| OPT environment

  9. MichaelEClarke@flickr One-Dimensional Agents Two-Dimensional Agents

  10. MichaelEClarke @flickr One-Dimensional Agents

  11. MichaelEClarke @flickr One-Dimensional Agents • nosimultaneousmovement

  12. One-Dimensional Agents • closedcurvesofequallengthl • anyalgorithmthatfinds an intersection in distanceatmostkneedsat least • 2k² + 2k - 4 steps (k<n) • 2n² + 4zn + 2n - 2z² - 2z - 4 steps (n<k, k=n+z) • strategyusesatmost • 2k² + 5k + 2steps (k<n) • 2n² + 4zn + 7n - 2z² - 3z + 2 steps (n<k, k=n+z) • strategyis 13/4 searchcompetitive 4k MichaelEClarke @flickr k

  13. One-Dimensional Agents • closedcurvesof different length • strategyusesatmost • 2k² + 5k + 2steps (k≤n) • 6n² + 7n + 2j(n+3) + 4nz‘ + 2j - 2 steps (n<k=n+z‘, 2j-1<z‘≤2j) • 5mn + n² + 4zn + 4n + 3m - 2z² - 2z + 2 log(m-n) - 2 steps (k=m+z) • anyalgorithmthatfinds an intersection in distanceatmostkneedsat least • 2k² + 2k - 4 steps (k≤n) • 2n² + 2n + z‘(4n+2) - 4 steps (n<k=n+z‘≤m) • 4mn - 2n² + 4zn - 2z² - 2z + 2m – 4 steps (k=m+z) • thestrategyis 11/2 searchcompetitive MichaelEClarke @flickr

  14. MichaelEClarke @flickr One-Dimensional Agents • simultaneousmovement

  15. One-Dimensional Agents • agentsmovealternatingly  all pointsofequaldistancetothestart on a diamond • agentsmovesimultaneously  all pointsofequaldistance on a square MichaelEClarke @flickr

  16. One-Dimensional Agents • twocurvesofequallength • an optimal strategymoves on a rectangular spiral-likesearchpattern: • targetatsomeunknown finite distancek • if agent knowsupperboundk‘ • does not visitpoints in distancek‘ + 1 • ifagentsdoes not know an upperbound: agent hasto cover eachlayerofpointsofthe same distance, beforevisiting a pointofthenextlayer • connectionoftwolayers: 1 step  squared spiral optimal MichaelEClarke @flickr

  17. One-Dimensional Agents Theorem: Even if the agents are allowed to move simultaneously, there is an optimal strategy in which the agents move alternatingly. MichaelEClarke @flickr

  18. Two-Dimensional Agents

  19. Two-Dimensional Agents • agent = diskofradius R • curves – circlesofradius r • searchspace: torus • but: infinite numberofrendezvouspoints. • setofrendezvouspoints: nomorethan 2 connectedcomponents (CCs) • goal: find a convexregionofcertainsize (in CCs) • inspect finite pointset on grid or  move on Archimedean spiral r R

  20. Two-Dimensional Agents Case 1: |paqb| ≤ 2R Case 2: |paqb| > 2R

  21. Two-Dimensional Agents In the search space there is a square of size at least 2R x 2R such that all points inside the square are rendezvous points.

  22. Outlook

  23. Outlook • Relatedgeometricproblems Baeza-Yates et al. variantsofstrategiespresentedtoday today

  24. Thankyou.

  25. MichaelEClarke @flickr Motivation – Finding Intersections One-Dimensional Agents • Nosimultaneousmovement • Simultaneousmovement Two-Dimensional Agents Outlook

  26. Motivation

  27. Motivation • planningmotionsfor mobile agents: • motion primitives • sensors • communication • here: agentsperformgeometric primitives • movetoanother agent • move on raybetweentwootheragents • move on a circle • whatcanweachievewiththis model? • intersectionpointoftrajectoriesoftwoagents

More Related