1 / 52

TECNICHE DI NEXT GENERATION SEQUENCING IN CAMPO MEDICO

TECNICHE DI NEXT GENERATION SEQUENCING IN CAMPO MEDICO. Dr. R. Piazza. R. Piazza – NGS Sequencing 30/10/13. XVI-XVII secolo : anatomia umana. XIX secolo : microbiologia. XX secolo : biochimica e biologia molecolare. 2008-2013: rivoluzione genetica.

javan
Télécharger la présentation

TECNICHE DI NEXT GENERATION SEQUENCING IN CAMPO MEDICO

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TECNICHE DI NEXT GENERATION SEQUENCING IN CAMPO MEDICO Dr. R. Piazza R. Piazza – NGS Sequencing 30/10/13

  2. XVI-XVII secolo: anatomiaumana XIX secolo: microbiologia XX secolo: biochimica e biologiamolecolare 2008-2013: rivoluzionegenetica R. Piazza – NGS Sequencing 30/10/13

  3. SANGER SEQUENCING + DNA R. Piazza – NGS Sequencing 30/10/13

  4. NEXT GENERATION SEQUENCING Flowcell R. Piazza – NGS Sequencing 30/10/13

  5. NEXT GENERATION SEQUENCING Library di DNA Genomic DNA R. Piazza – NGS Sequencing 30/10/13

  6. NEXT GENERATION SEQUENCING R. Piazza – NGS Sequencing 30/10/13

  7. NEXT GENERATION SEQUENCING I 4 nucleotidimarcati con fluorocromi e bloccati in 3’ sonoaggiunticontemporaneamente Primer di sequenziamento Nucleotidimarcati e bloccati R. Piazza – NGS Sequencing 30/10/13

  8. NEXT GENERATION SEQUENCING R. Piazza – NGS Sequencing 30/10/13

  9. NEXT GENERATION SEQUENCING ACQUISIZIONE DELL’IMMAGINE RIMOZIONE DEL FLUOROFORO RIMOZIONE DEL BLOCCO AL 3’ R. Piazza – NGS Sequencing 30/10/13

  10. HIGH-THROUGHPUT SEQUENCING R. Piazza – NGS Sequencing 30/10/13

  11. R. Piazza – NGS Sequencing 30/10/13

  12. T = Clusters#/Tile x Tile/Lane# x Lanes# x Seq_Length x 2 * 120 T = 300000 * 8 * 76 * 2 = ~ 45 Gigabasi! 76bp 76bp Genomaumano = 3 Gigabasi Un’analisirichiede ~ 6000 Gigabyte per lo storage deidati! R. Piazza – NGS Sequencing 30/10/13

  13. SANGER SEQ vs. NGS THROUGHPUT COSTO PER-BASE Allele #1 C A G C G A C A G C A G C A T T G GG A C Allele #2 C A G C G A C A G C G G C A T T G GG A C NGS Read #5 C A G C G A C A G C G G C A T T G GG A C NGS Read #4 C A G C G A C A G C A G C A T T G GG A C NGS Read #3 C A G C G A C A G C A G C A T T G GG A C Coverage = 5 NGS Read #2 C A G C G A C A G C A G C A T T G GG A C NGS Read #1 C A G C G A C A G C G G C A T T G GG A C Allele #1 C A G C G A C A G C A G C A T T G GG A C C A G C G A C A G C G G C A T T G GG A C Allele #2 R. Piazza – NGS Sequencing 30/10/13

  14. HIGH-THROUGHPUT SEQUENCING: APPLICAZIONI DNA GENOMIC DNA SEQUENCING RESEQUENCING DE NOVO SEQUENCING WHOLE-EXOME SEQUENCING ChIP-Seq DEEP SEQUENCING METHYL-SEQ RNA mRNA SEQUENCING TRANSCRIPTOME SEQUENCING (RNA-SEQ) TAG SEQUENCING (DITAG) MICRO-RNA STUDIES R. Piazza – NGS Sequencing 30/10/13

  15. WHOLE-GENOME, WHOLE-EXOME AND ULTRADEEP-SEQUENCING COVERAGE COVERAGE R. Piazza – NGS Sequencing 30/10/13

  16. ULTRADEEP SEQUENCING – QUANDO ? M M ABL kinase domain R. Piazza – NGS Sequencing 30/10/13

  17. R. Piazza – NGS Sequencing 30/10/13

  18. WHOLE-EXOME SEQUENCING R. Piazza – NGS Sequencing 30/10/13

  19. R. Piazza - Catania - 11/7/13

  20. R. Piazza – NGS Sequencing 30/10/13

  21. ALIGNMENT DONE: WHAT’S NEXT ? T T T T T T C C C C C C G G G G G T T T T T T T A A A A VARIANT CALLING MUTATION, SEQ ERROR OR SNP ? SINGLE NUCLEOTIDE POLYMORPHISM CONTROL SAMPLE CASE SAMPLE VARIANT .... A A A G G G G G G G T T A A A A A A G C T ..ACTGAATTGCTGATTGTCAAGTCTGCTAGCG... .... A A G G G G T T T T T T ..ACTGAATTGCTGATTGTCAAGTCTGCTAGCG.. VarScan 2 (http://massgenomics.org/varscan) KoboldtDC et al., Genome Res. 2012 Mar;22(3):568-76 R. Piazza – NGS Sequencing 30/10/13

  22. WHOLE-EXOME SEQUENCING GOES DIGITAL CONTROL CASE R. Piazza – NGS Sequencing 30/10/13

  23. LOSS OF HETEROZYGOSITY – ALLELIC IMBALANCE A CONTROL A A T T T A CASE R. Piazza – NGS Sequencing 30/10/13

  24. COMPARATIVE WHOLE-EXOME SEQUENCING GOES DIGITAL: CEQer EXONIC QUANTIFICATION ANALYZER Piazza R. et al., PLoS One. 2013 Oct 4;8(10):e74825

  25. Statistical module As sample sizeincreases (Nr> 10) the Z-Score converges to a Gaussiandistribution! WilcoxonSigned-Rank test Test statistic W WilcoxonSigned-Rank test ..using the Abramowitz and Stegun approximation equation 7.1.26 Estimating the errorfunction of the normaldistribution of W.. R. Piazza – NGS Sequencing 30/10/13

  26. CML-BC PATIENT: CML001BC Chr9 HET POSITION IN CONTROL Log2 Ratio EXON CDKN2A (p16) R. Piazza – NGS Sequencing 30/10/13

  27. CML-BC PATIENT: CML004BC Chr17 http://www.ngsbicocca.org/html/ceqer.html p53 R. Piazza – NGS Sequencing 30/10/13

  28. ANALISI DI PRODOTTI DI FUSIONE ONCOGENICI R. Piazza – NGS Sequencing 30/10/13

  29. ANALISI DI PRODOTTI DI FUSIONE ONCOGENICI FRAMMENTAZIONE ? R. Piazza – NGS Sequencing 30/10/13

  30. mRNA-seq – DRIVER FUSION TRANSCRIPTS IDENTIFICATION Junction reads Bridge reads 76bp 76bp Piazza R. et al., Nucleic Acids Res. 2012 Sep;40(16):e123 R. Piazza – NGS Sequencing 30/10/13

  31. EXOME BUILDER EXOME DATASET SAM BAM ABNORMAL PAIRS SCANNER ABNORMAL PAIRS ABL ex2 BCR ex14 CCDS / REFFLAT HALF-MAPPED PAIRS PUTATIVE TRANSLOCATIONS SET (PTS) FILTERED HALF-MAPPED PAIRS PREFILTERING ALGORITHM FILTERED PTS Genome MappingQuality Read Quality Homology Filter Threshold Filter N Filter ALIGNMENT TO HUMAN GENOME ??? R. Piazza – NGS Sequencing 30/10/13

  32. 1 2 3 4 FILTERED PTS JUNCTION FINDER Ex12 Ex2 Ex3 Ex4 Ex13 Ex14 ABL BCR 1 2 JUNCTIONS LIST 3 4 FILTERED HALF-MAPPED PAIRS ALIGNMENT ALGORITHM Ex14 Ex2 JUNCTION READ JUNCTION BCR JUNCTION ??? R. Piazza – NGS Sequencing 30/10/13

  33. JUNCTION READ FRAME ALGORITHM DIRECTION ALGORITHM 5’ BCR 3’ ABL RECIPROCAL TRANSLOCATION ALGORITHM 5’ ABL BCR 3’ R. Piazza – NGS Sequencing 30/10/13

  34. BCR-ABL1 p210 e13a2 t(9;22) BCR-ABL1 p210 e14a2 t(9;22) BCR-ABL1 p190 t(9;22) AML1-ETO t(8;21) CBFB-MYH11 inv(16) CEP110-FGFR1 t(8;9) EWSR1-ERG t(21;22) MLL-MLLT1 t(11;19) MLL-MLLT3 t(9;11) MLLT10-PICALM t(10;11) NCOA4-RET inv(10) NPM-ALK t(2;5) R. Piazza – NGS Sequencing 30/10/13

  35. RNA-SEQ GOES DIGITAL READ RPKM = READS PER KBASE PER MILLION OF MAPPED READS TPM = TRANSCRIPTS PER MILLION EXON LOW EXPRESSION RNA-Seq HIGH EXPRESSION TOPHAT (http://tophat.cbcb.umd.edu/) CUFFLINKS (http://cufflinks.cbcb.umd.edu/) Trapnell C, et al. Nat. Biotechnol. 2010;28:511–515.

  36. HIGH-THROUGHPUT SEQUENCING: APPLICAZIONI DNA GENOMIC DNA SEQUENCING RESEQUENCING DE NOVO SEQUENCING WHOLE-EXOME SEQUENCING ChIP-Seq DEEP SEQUENCING METHYL-SEQ RNA mRNA SEQUENCING TRANSCRIPTOME SEQUENCING (RNA-SEQ) TAG SEQUENCING (DITAG) MICRO-RNA STUDIES R. Piazza – NGS Sequencing 30/10/13

  37. METHYL-SEQ R. Piazza – NGS Sequencing 30/10/13

  38. NEXT GENERATION SEQUENCING STANDARDIZED FILE FORMATS ARE NOW AVAILABLE FOR SEQUENCES AND ALIGNMENTS A LARGE NUMBER OF TOOLS HAS BEEN DEVELOPED TO ANALYSE NGS DATA THE LARGE MAJORITY OF THEM IS COMPLETELY FREE MANY TOOLS ARE OPEN-SOURCE IS THIS THE PERFECT NGS WORLD ?? R. Piazza – NGS Sequencing 30/10/13

  39. NEXT GENERATION SEQUENCING INSTALLATION IS CHALLENGING (DEPENDENCY HELL!) THE SAME NGS DATA MUST BE OFTEN INTERROGATED MULTIPLE TIMES THE LARGE MAJORITY OF NGS TOOLS IS FAR FROM BEING USER-FRIENDLY MANY TOOLS RUN ONLY UNDER LINUX R. Piazza – NGS Sequencing 30/10/13

  40. ESPERIENZA DELL’EMATOLOGIA MONZESE IN NGS: LA LEUCEMIA MIELOIDE ATIPICA La LeucemiaMieloideCronicaAtipica (aCML) è unapatologiaclonaleappartenente al gruppodellesindromimielodisplastiche/mieloproliferative (MDS/MPN). La aCML è caratterizzata da manifestazionicliniche e di laboratoriosimilialla CML classica, tuttavial’assenza del cromosoma Philadelphia e del prodotto di fusione BCR/ABL suggeriscono la presenza di un differentemeccanismopatogenetico. La prognosidell’aCML è infausta, con unamediana di sopravvivenza di 37 mesi. La causamolecolaredell’aCML è ad oggisconosciuta. Con l’obiettivo di identificarelesionimolecolariricorrenti in aCML abbiamoeffettuatoanalisi di sequenziamento esonico in 8 campioni (DNA genomico da cellule leucemiche + DNA germline) di aCML. R. Piazza – NGS Sequencing 30/10/13

  41. In media, 8 miliardi di basisequenziate per esoma Coverage esonico medio: 80x 84variantisomaticheesoniche, di cui 63 non sinonime R. Piazza – NGS Sequencing 30/10/13

  42. TARGETED RESEQUENCING R. Piazza – NGS Sequencing 30/10/13

  43. Germline VariantiSomatiche SGS aCML SETBP1 R. Piazza – NGS Sequencing 30/10/13

  44. p = 0.01 p = 0.008 SETBP1 WT SETBP1 mutato MUT WT MUT WT MUT WT R. Piazza – NGS Sequencing 30/10/13

  45. Proteases MYC pY307 SET SET SET SET SET Beta-Catenin SETBP1 AKT PP2A R. Piazza – NGS Sequencing 30/10/13

  46. DOMINIO PEST p p S E S H S E E T I P S D S G I G T D N N S T S D Q A E K S S E Beta-TRCP (F-box Protein) Beta-TRCP R. Piazza – NGS Sequencing 30/10/13

  47. Ub G870S G870S Beta-TRCP Proteases Proteasome pY307 SET SET SET SET MYC SETBP1 SETBP1 Beta-Catenin PP2A AKT R. Piazza – NGS Sequencing 30/10/13

  48. S E S H S E E T I P S D S G I G T D N N S T S D Q A E K S S E Pept. WT: Biotin-S H S E E T I P S D PS G I G PT D N N S T S Pept. G870S: Biotin-S H S E E T I P S D PS S I G PT D N N S T S P P R. Piazza – NGS Sequencing 30/10/13

  49. R. Piazza – NGS Sequencing 30/10/13

More Related