210 likes | 320 Vues
This study presents the first validation of a semi-implicit semi-Lagrangian method designed for coupling atmospheric and oceanic models. Conducted by researchers from various Canadian institutions, the project aims to enhance numerical predictions by implementing a unified modeling approach. Utilizing advanced techniques in trajectory calculation and interpolation, the method showcases its potential for operational meteorological applications. By leveraging supercomputing capabilities, the research fosters scientific collaboration and aims to improve our understanding of ocean-atmosphere interactions.
E N D
A Shared Atmosphere-Ocean Dynamical Core: First Validation(Semi-Implicit Semi-Lagrangian) Pierre Pellerin(2), François Roy(1,3), Claude Girard(2), François J. Saucier(3), and Hal Ritchie(2) (1)Ocean Science Branch, Maurice Lamontagne Institute, Department of Fisheries and Oceans, Mont-Joli, Québec, Canada (2)Recherche en Prévision Numérique, Service Météorologique du Canada, Dorval, Québec, Canada (3)Institut des Sciences de la Mer, Université du Québec à Rimouski, Rimouski, Québec, Canada
Introduction The idea of a common kernel for the atmosphere and the ocean using the semi-implicit semi-Lagrangian method implemented at CMC/RPN: Advantages and Motivations for Recherche en Prévision Numérique (RPN) and Environment Canada: • Complete a pilot study initiated by the late André Robert • The method is already implemented at the Canadian Meteorological Centre (CMC) and optimized for operational runs on super-computers • Something to offer to oceanographers in favor of technical and scientific collaborations • -Possible access to numerical and scientific developments from oceanographers • - Identify approach for GEM or other future models
generalized pressure AIR Water buoyancy generalized buoyancy Quasi-unified semi-discrete equations Ref: Girard et Al. 2005: MWR
V V V V P P P P U U U U U U Conditions Miroirs V V Objet solide L’objet Solide (advection semi-lagrangienne) • Actions: • Calcul des trajectoires 2) Interpolations Grille Arakawa Type C
V V V V Pour UU selon un mur en x: P P P P U U U U U U V V Pour VV selon un mur en x: ‘Free slip’ Objet solide L’objet Solide (advection semi-lagrangienne) • Actions: • Calcul des trajectoires • Interpolations • Solveur Équation Elliptique Grille Arakawa Type C
Le Masque VV V V V V Le masque pour P, WZ,BB … P P P P U U U U U U V V Le masque pour UU L’objet solide (les masques):
IML EAU RPN EAU VV VV L’objet solide (Comparaisons IML – RPN): UU UU
Solid Objects: Von Karman Vortex Streets Evaluation of 3 physical parameters.
Von Karman vortex streets Kundu: Fluid Mechanics Separation points ~ 80 ° Stagnation points Solid object (RPN/IML cf laboratory): Reynolds = 104 Kundu: Fluid Mec.
RPNRe=140Cylinder LaboratoryRe=140Cylinder LaboratoryRe=140Cylinder • Few Numerical noise => Allow to produce realistic vortex • Few Numerical diffusion => Allow to maintain the vortex RPNRe=140Cylinder
Demonstration experiment:Oklahoma city(300 x 200 x 50), DX=DY=1.5 meters, dt=0.12 sec, 4000 timesteps