1 / 28

Chemical Vapor Deposition of NiFe 2 O 4 using Nickelocene and N-butylferrocene

Chemical Vapor Deposition of NiFe 2 O 4 using Nickelocene and N-butylferrocene. Mark Kimbell. Prof. Takoudis Manish Singh Yi Yang. Project. Chemical Vapor Deposition Nickel Oxide ( NiO ) using Ni(C 5 H 5 ) 2 Iron Oxide (Fe 2 O 3 ) using FeC 14 H 18 Nickel Ferrite (NiFe 2 O 4 )

jena
Télécharger la présentation

Chemical Vapor Deposition of NiFe 2 O 4 using Nickelocene and N-butylferrocene

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chemical Vapor Deposition of NiFe2O4 using Nickelocene and N-butylferrocene Mark Kimbell Prof. Takoudis Manish Singh Yi Yang

  2. Project • Chemical Vapor Deposition • Nickel Oxide (NiO) using Ni(C5H5)2 • Iron Oxide (Fe2O3) using FeC14H18 • Nickel Ferrite (NiFe2O4) • Choose appropriate conditions based on NiO and Fe2O3 growth rates • XPS to analyze chemical composition • XRD to analyze crystalline structure

  3. Background • The magnetoelectric (ME) effect • Ferroelectric and ferromagnetic coupling • Magnetic switching by an applied electric field • Electric polarity switching by an applied magnetic field

  4. Magnetoelectric Materials • Uses • Memory storage devices • Tunable microwave devices • Sensors • Transducers C Israel, ND Mathur & JF Scott, Nature Materials 7 (2008) 93

  5. Magnetoelectric Composites • Magnetoelectric composites • Made up of a piezoelectric layer and a magnetostrictive layer NiFe2O4

  6. Chemical Vapor Deposition (CVD) Argongas Heater Oxygen gas Substrate Quartz tube Vacuum pump

  7. Precursors • Source of the vapor which is fed into the reaction chamber • N-BUTYLFERROCENE • NICKELOCENE • C14H18Fe • Ni(C5H5)2

  8. Nickel Oxide Data Nickel Oxide Growth Rate (Reactor = 400 oC) Temperature of Nickelocene (oC)

  9. Iron Oxide Data Iron Oxide Growth Rate (Reactor = 500 oC) Growth Rate (nm/min) Temperature of N-Butylferrocene (oC)

  10. Important Results • Treactor = 400oC • Tnickelocene = 60oC • Treactor = 400oC • Tn-butylferrocene = 65oC NiO growth rate = 4.6 nm/min Fe2O3 growth rate = 8.5 – 9 nm/min

  11. The Plan

  12. X-Ray Photoelectron Spectroscopy (XPS) • Uses x-rays to knock electrons free from surface • Measures kinetic energy of electrons to determine chemical composition http://www.sckcen.be/microstructure/Infrastructure/XPS/Infrastructure_XPS.htm

  13. XPS Results • Longer cycles (5 cycles, 90 seconds each) Ni 2p Fe 2p O 1s C 1s

  14. XPS Results • Shorter cycles (20 cycles, 18 seconds each) Ni 2p Fe 2p O 1s C 1s

  15. XPS Results • Co-Deposition Ni 2p Fe 2p O 1s C 1s

  16. XPS Results • Co-Deposition Ni 2p Fe 2p O 1s C 1s

  17. XPS Results – Iron * Peaks correspond to Fe(III) oxidation state * S. A. Chambers, Y. J. Kim, and Y. GaoSurf. Sci. Spectra 5 219 (1998)

  18. XPS Results – Nickel * Peaks correspond to Ni(II) oxidation state * A. N. Mansour, Surf. Sci. Spectra 3 231 (1994)

  19. XPS Results • Do not indicate the presence of NiFe2O4 • Probably due to interactions between the two gases • Presence of carbon • From atmosphere • Argon sputtering • From unreacted precursor • Due to relatively low deposition temperature

  20. Summary • XPS revealed the presence of both Ni(II) and Fe(III) • The ratio of Ni to Fe did not indicate NiFe2O4 • Different deposition conditions must be used in order to achieve the correct ratios • Higher reactor temperature • Higher iron precursor temperature • Lower nickel precursor temperature

  21. Future Work • Try different deposition conditions to deposit NiFe2O4 thin films • X-ray diffraction (XRD) on NiFe2O4 thin films to determine crystalline structure • Anneal to reduce carbon contamination, correct defects / change crystal structure

  22. References • E. Ascher, H. Rieder, H. Schmid, and H. Stössel, J. Appl. Phys. 37 (1966) 1404 • W. Eerenstein, N. D. Mathur and J. F. Scott, Nature 442, (2006) 759-765 • A.M.J.G. Van Run, D.R. Terrell, and J.H. Scholing, Journal of Materials Science 9 (1974) 1710-1714 • W. Yeh and M. Matsumura, Jpn. J. Appl. Phys. Vol. 36 (1997) Pt. 1, No. 11 • M. Singh, Y. Yang, and C.G. Takoudis, Journal of The Electrochemical Society, 155 (9) (2008) D618-D623 • S.A. Chambers, Y.J. Kim, and Y. Gao, Surf. Sci. Spectra 5 (1998) 219 • S. Oswald and W. Bruckner, Surf. Interface Anal. 36 (2004) 17–22 • http://www.sckcen.be/microstructure/Infrastructure/XPS/Infrastructure_XPS.htm

  23. Acknowledgements • EEC-NSF Grant # 0755115 • Dr. Christos Takoudis • Graduate students: Yi Yang, Manish Singh, Qian Tao

  24. Questions?

  25. Cycling Argongas Heater Oxygen gas Substrate Quartz tube Vacuum pump Cycling

  26. Co-Deposition Argongas Heater Oxygen gas Substrate Quartz tube Vacuum pump Co-Deposition

  27. Experiment – Setup Temperature controllers Precursor containers • nickelocene • n-butylferrocene Cold trap Reaction chamber Vacuum pump

  28. Ellipsometer • Used to measure film thickness Light source Θ Analyzer Polarizer Sample

More Related