1 / 41

R&D Scintillators / Photodetectors @ IPN Orsay

R&D Scintillators / Photodetectors @ IPN Orsay. Joël Pouthas R&D Detector Department. 5 engineers 3 mechanical designers 2 technicians in electronics 4 technicians in detector assembly. Gaseous detectors Wire chambers, MPGD ALICE @ CERN HADES @ GSI R&D on Micromegas. Scintillators

jethan
Télécharger la présentation

R&D Scintillators / Photodetectors @ IPN Orsay

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. R&D Scintillators / Photodetectors @ IPN Orsay Joël Pouthas R&D Detector Department

  2. 5 engineers 3 mechanical designers 2 technicians in electronics 4 technicians in detector assembly Gaseous detectors Wire chambers, MPGD ALICE @ CERN HADES @ GSI R&D on Micromegas Scintillators Photomultipliers G0 & DVCS @ Jefferson Lab. P.AUGER Observatory PANDA @ GSI Joël Pouthas IPN Orsay May 2007 R&D Detector Department http://ipnweb.in2p3.fr/~rdd

  3. Climat Test Cabinet Joël Pouthas IPN Orsay May 2007 Large Photomultipliers Started with AUGER Surface Detectors PMT : PHOTONIS XP 1805 (9’’) Base design : IPN Orsay (End of 2000) Production : 5000 pieces (2001-2005) Photonis, IPN Orsay, INFN Torino Continue with R&D Programs IPN Orsay / PHOTONIS (Sept 03-Sept 06) Definition and construction of test benches Construction and measurements of different PMTs (5”,8”,9”,10”) Photocathode characterization. Afterpulse measurements IPN Orsay / PHOTONIS (Sept 06-Sept 09) End of measurements (12”,15”?). Afterpulse and glass studies Hybrid (Scintillator) PMT IPN Orsay / LAL Orsay / LPP Annecy /PHOTONIS (2007-2010) PMm2 (ANR Program) R&D for neutrino Megaton Detectors Interest for PARIS ? Existing benches for PMT tests Good connection to the PMT supplier PHOTONIS

  4. Inner calorimeter (PbWO4) 424 crystals, 160 mm long, pointing geometry, ~ 1 degree/crystal, APD readout PROTOTYPE 100 Crystals Joël Pouthas IPN Orsay May 2007 Electromagnetic Calorimeters DVCS / CLAS Jefferson Lab , USA 2002 R&D and preliminary tests 2003 Design and construction of a prototype 2004 (Jan) Prototype test on beam 2004 Final design and construction 2005 (Mar) Experiment

  5. Joël Pouthas IPN Orsay May 2007 Electromagnetic Calorimeters DVCS / CLAS Jefferson Lab , USA Mechanical integration Studies on carbon fiber supports Interest for PARIS ?

  6. HESR Existing GSI Facilities Electromagnetic Calorimeters FAIR : Future Facility at GSI Darmsdat, Germany HESR : antiproton storage ring 1-15 GeV/c PANDA : 4π internal target detector PANDA Collaboration Joël Pouthas IPN Orsay

  7. Central (Target Spectrometer) 1.94 m What is PANDA ? 2 Tesla Solenoid Magnet 1999 - Letter of Intent 2001 – CDR (Conceptual Design Report) Feb 2005 – Technical Progress Report 2012 - End of construction Micro vertex Straw tubes (or TPC) DIRC-like Cerenkov Electromagnetic Calorimeter Forward Central HESR : antiproton storage ring 1-15 GeV/c PANDA : 4π internal target detector PANDA Collaboration Joël Pouthas IPN Orsay

  8. Scintillator Low radiation length Low Molière radius Photodetector: no PMT PANDA Calorimeter Requirements Geometry Compact Close to 4π Energy range 10 GeV down to 10 MeV Magnetic field 2T PWO, Lead Tungstate (PbWO4) BGO, Bismuth Germanate (Bi4Ge3O12) New crystals (LSO, LYSO) ? APD Cooled (-25°C) CMS and ALICE Collaborations Costs and available Plants 20 000 crystals of 20cm long PANDA Collaboration Joël Pouthas IPN Orsay

  9. PWO, Lead Tungstate (PbWO4) APD Cooled (-25°C) PANDA Calorimeter R&D Programs LAAPD, large size APD Low noise electronics Increase the PWO light yield Mechanical design and cooling PANDA Collaboration Joël Pouthas IPN Orsay

  10. PANDA Calorimeter Mechanical Design Barrel Length: 2.5 m Radius: 0.57 m 11 520 crystals (Front face 21x21mm2) (200 mm long) 16 slices of 720 crystals PANDA Collaboration Joël Pouthas IPN Orsay

  11. PANDA Calorimeter Mechanical Design 16 slices of 720 crystals in 6 modules Support beam Bending: 0.25 mm under 750 kg Close to CMS EMC … but, must be cooled to -25° PANDA Collaboration Joël Pouthas IPN Orsay

  12. Carbon wall: 180 µm Crystals wrapped in 70 µm ESR (VM 2000) Hold by the back Aluminium insert with 4 APDs and a quad preamplifier PANDA Calorimeter Mechanical Design 4 crystals per alveole Carbon alveoles PANDA Collaboration Joël Pouthas IPN Orsay

  13. PANDA Calorimeter Mechanical Design Carbon alveoles 4 crystals per alveole Deformation tests In agreement (10%) with calculations on Composite material (Max deformation 100 µm) PANDA Collaboration Joël Pouthas IPN Orsay

  14. Carbon fiber + Al Insert Loaded with 10 kg of dummy crystals PANDA Calorimeter Mechanical Design Gluing tests Thermal cycles ( – 25°C / + 60°C ) PANDA Collaboration Joël Pouthas IPN Orsay

  15. Sensors PANDA Calorimeter Cooling studies Dedicated Set up Preamp. PWO Model adjustment (Calculations on Flotherm) Insulated cooled box 4 Preamp in a tight box PANDA Collaboration Joël Pouthas IPN Orsay

  16. APD connection preamplifier : Δ+4°C +20°C T4 R3 Cable Zoom Temp scale T3 R2 APD T2 R1 Crystal Cold face T1 Front face temperature: Δ+0°C -25°C PANDA Calorimeter Cooling studies 50 mW per Preamp Heat source Screen Quad Preamp APDs Analytical model APD Temperature 4 Crystals 4 Crystals Stable : 20 mm Vacuum screen Cold face 0.2 °C variation for 10°C external variation PANDA Collaboration Joël Pouthas IPN Orsay

  17. New CMS 10x10mm2 5x5mm2 PANDA Calorimeter R&D on APD Large Area Avalanche Photo Diodes in collaboration withHamamatsu Photonics Extensive studies Low energy (Na22) with a small BGO crystal Resolution Gain = f (V,T) PANDA Collaboration Joël Pouthas IPN Orsay

  18. PANDA Calorimeter Next milestones “Straight Prototype” 25 crystals (22x22mm2, 200mm) “PMT (crystal response) APD + Preamp Beam tests à Mainz on February and June 2007 “Full size Prototype” 60 crystals Type 6 sub module (22x22mm2, 200mm, tapered) Calorimeter response (Step effect) Barrel integration test (Mechanics,APD , Quad Preamp, Cooling) Ready by Spring 2007 Beam tests on Fall 2007 PANDA Collaboration Joël Pouthas IPN Orsay

  19. Joël Pouthas IPN Orsay May 2007 Electromagnetic Calorimeters PANDA FAIR, Germany Mechanical integration on a large scale Fabrication of carbon fiber supports IPN Orsay Studies on cooling and thermal stabilities Interest for PARIS ? Knowledge about APDs in the Collaboration

  20. Calorimeter Joël Pouthas IPN Orsay May 2007 R&D for NUSTAR @ FAIR EXL High Vacuum Gaseous target Silicon Detectors

  21. Simulations: Geometry and Energy resolutions Detector tests Joël Pouthas IPN Orsay May 2007 R&D for NUSTAR @ FAIR R3B Calorimeter H. Alvarez Pol GENP – Univ. Santiago de Compostela

  22. Joël Pouthas IPN Orsay May 2007 R&D for NUSTAR @ FAIR R3B Calorimeter Common R&D for the EXL and R3B Calorimeters Basic design : CsI(Tl) Studies on alternative solutions

  23. 66x22x200mm3 44x22x200mm3 22x22x220mm3 22x22x22mm3 Measurements of CsI(Tl) 4 sizes of CsI(Tl) crystals from Saint-Gobain Jean Peyré Milano - Oct 2006 IPNO-RDD-Jean Peyré

  24. XP5300B S8664-1010 XP1912 Photodetectors APD Hamamatsu • XP1912  Ø 19 mm (Active area 176mm2), bialkaly • XP5300B  Ø 76 mm, green extended bialkaly • Quantum efficiency • XP1912 29% at 439nm, 10% at 547nm • XP5300B 32% at 439nm, 16% at 547nm Active area 10x10 mm2 Quantum efficiency 70% at 420nm 85% at 550nm PMTs Photonis

  25. XP5300B Crystal Lead collimator Experimental setup Source Wooden black box Lead collimator Photomultiplier Translation of source Source

  26. Results CsI(Tl)+Teflon+XP5300B+137Cs Energy Resolution FWHM Collected light for 137Cs peak VS position of impact • Global Resolution is quite constant along the Crystal • Variation from 14% to 38% of collected light along the Crystal

  27. Change of crystal wrapping Crystal wrapped with VM2000

  28. Results CsI(Tl)+XP5300B+137Cs Collected light for 137Cs peak VS position of impact • Problems with 22x22x22O CsI(Tl) crystal • Resolution better with VM2000 -> Chosen for all next tests

  29. Results for PMT/VM2000+137Cs 2 PMT sizes (with different QE)Ø 76 mm and Ø 19 mm XP5300B Collected light for 137Cs peak VS position of impact XP1912

  30. APD Collected light for 137Cs peak VS position of impact Results CsI(Tl)+VM2000+APD+137Cs APD (S8664 – 1010)10 x 10 mm2

  31. Results CsI(Tl)+VM2000+APD+137Cs APD (S8664 – 1010)10 x 10 mm2 APD Problems close to the APD (Direct interaction of low energy γ-rays)

  32. 22x22x22 22x22x220 44x22x200 66x22x200 XP5300B 5,74% 6,70% 5,86% 6,57% APD S8664-1010 8,23% 9,39% XP1912 8,05% 9,40% 10,33% 12,28% Energy Resolutions CsI(Tl)+VM2000+APD/PMT+137Cs

  33. Energy Resolutions CsI(Tl)+VM2000+XP1912+137Cs+60Co+56Co Collected light for 137Cs,60Co, 56Copeaks VS position of impact XP1912

  34. Energy Resolutions CsI(Tl)+VM2000+APD+137Cs+60Co+56Co Collected light for 137Cs,60Co, 56Copeaks VS position of impact APD

  35. New results and orientations Tests on CsI(Na) crystals Tests on LaCl3 and LaBr3 Timing measurements (LaCl3 , LaBr3) Measurements with square shaped PMTs IPNO-RDD-Jean Peyré

  36. Comparison of crystals(Energy resolution) 137Cs CsI(Na) 56Co 60Co 22x22x22 CsI(Tl) 22x22x22 LaCl3 Diam25x25 LaBr3 Diam25x25

  37. Resolution of LaBr3

  38. Resolution of LaBr3 LaBr3 diam25x25 measured @ IPNO

  39. Possible Calorimeter Design Square PMT (2 per envelop) Tests on a prototype Rectangular Crystals

  40. Joël Pouthas IPN Orsay May 2007 Concluding remarks R&D are performed for other calorimeters Scintillators Photodetectors Mechanical assembly Electronics (not discussed here) Requirements from Physics must be clearly defined Resolution (Energy, Angular, Time ?) Spatial coverage (dead zones) Counting rates Possible coupling with other detectors ? … with a clear consideration of the cost issues

  41. Joël Pouthas IPN Orsay May 2007 Proposal Animation of a Working Group Technical synergies with other detectors (close collaboration with Jean Antoine)

More Related