1 / 25

AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac Professor of Aerospace Engineering

AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac Professor of Aerospace Engineering. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR. MacCormack’s method (6.3) Original (1969) method is 2 nd order accurate (in space and time)

Télécharger la présentation

AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac Professor of Aerospace Engineering

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac Professor of Aerospace Engineering topic11_shocktube_problem

  2. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR MacCormack’s method (6.3) Original (1969) method is 2nd order accurate (in space and time) explicit method. It is a modified form of the Lax-Wendroff scheme. Using MacCormack’s method we write Predictor step topic11_shocktube_problem

  3. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Insert Figure 6.2 topic11_shocktube_problem

  4. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Predicted value, first order accurate Similar equations can be written for the predicted values of the Other variables in the U_bar vector. Note that the forward difference is used in Eq. (6.17) for the space derivative topic11_shocktube_problem

  5. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Corrector step First obtain a predicted value of the time derivative using backward difference for the space derivatives Now find average value of the time derivative as topic11_shocktube_problem

  6. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Now use Eq. (6.13) to calculate the variable at (n+1) Repeat the procedure to get the variable at all the grid points shown In Figure 6.2 The same procedure can be used for all the other variables of the solution vector U_bar, using forward difference for the predictor step and backward difference for the corrector step. Because of using forward difference for the predictor and backward differnce for the corrector step, the method can be shown to be 2nd order accurate. topic11_shocktube_problem

  7. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR The Shock Tube Process (11.4.2) Insert Figure 11.5 topic11_shocktube_problem

  8. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Consists of a high pressure chamber and a low pressure chamber separated by a diaphragm When the diaphragm is broken a wave pattern is established as shown In the figure Figure shows the flow at a certain time t1, when the waves haven’t Started reflecting from the tube ends Insert Figure 11.6 topic11_shocktube_problem

  9. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR topic11_shocktube_problem

  10. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Recall the following vector form of the equations topic11_shocktube_problem

  11. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR topic11_shocktube_problem

  12. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR topic11_shocktube_problem

  13. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR topic11_shocktube_problem

  14. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR The above vectors can be modified for the shock tube problem. Since only one space dimension is present, the vectors can be shortened as follows topic11_shocktube_problem

  15. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR topic11_shocktube_problem

  16. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR topic11_shocktube_problem

  17. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR topic11_shocktube_problem

  18. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Recall that, according to Stokes hypothesis Also recall that Therefore Also recall topic11_shocktube_problem

  19. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR If we neglect external heating, the J-vector on the RHS will be = 0. Therefore we can write topic11_shocktube_problem

  20. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Auxiliary relations for a perfect gas topic11_shocktube_problem

  21. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Calculate from topic11_shocktube_problem

  22. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR topic11_shocktube_problem

  23. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR topic11_shocktube_problem

  24. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR topic11_shocktube_problem

  25. Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR topic11_shocktube_problem

More Related