1 / 42

Astrophysique Multi-Echelle (AME) Previously « Fluides et Plasmas Astrophysiques » (FPA)

Astrophysique Multi-Echelle (AME) Previously « Fluides et Plasmas Astrophysiques » (FPA). Domains & Methods. Physical processes in astrophysical plasmas Fundamental Physics Modelling objects at any scales (from atoms to universe!) Numerical simulations Databases

jirair
Télécharger la présentation

Astrophysique Multi-Echelle (AME) Previously « Fluides et Plasmas Astrophysiques » (FPA)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Astrophysique Multi-Echelle (AME) Previously « Fluides et Plasmas Astrophysiques » (FPA)

  2. Domains & Methods • Physical processes in astrophysical plasmas • Fundamental Physics • Modelling objects at any scales (from atoms to universe!) • Numerical simulations • Databases • Astrophysics in the lab (lasers, ATER) • Implication in large projects: Observations: COROT, FUSE, Keck, VLT, HST, Spitzer, Sloan Digital Sky Survey, RT DAM Nançay and Kharkov Experiments: Laser Mégajoule, MHD

  3. Composition of the team • PhD students (6) • Cavet C. * • Globus N. * • Mouhali W. • Nguyen C. * • Pinto R. • Vale-Asari N. • Associates (5) • Celerier M-N. • Cornille M. * • Herpe G. * • Leorat J. • Megessier C. Permanent (10) • Alecian G. • Cayatte V. * • Grappin R. • Michaut C. * • Nottale L. • Sauty Ch. * • Stasinska G. • Schneider J. (Em) • Vitry R. (Ing.) • Zahn J-P. (Em) • MottezF. • Zeippen C. • Temporary (until Oct. 2008) • Boireau L., Cabrera J., Ceccolini D., da Rocha D., Falize E., Hess S., Simon-DiazS. • Externalassociates (12) • Blancard Ch., Bouquet, S., Brun S., Cid-Fernandes R., Delahaye F., Dubau J., Galopeau P., Gonçalves-Darbon A., Mathis S., Meliani Z., Michaud G. (Can), Stift, M. (Aut) coordinator of the previous team (FPA) • (* JAR group)

  4. Scientific production • Publications during the FPA periodfrom 15/10/2004 to 15/10/2008 (referenced by AERES) • Journals 119 (for 9 FPA researchers ) • Conferences 138 • Books 11 • others 10 • Thesis+HDR 8

  5. Other activities: Scientific Coordination • LEA AstrophysiquePologne-France (Stasinska) • PICS France-Arménie (Alecian) • Exoplanet Encyclopaedia and IYA2009 “Special Task” (Schneider) • International working wroup “Oxygen in the Universe (Stasinska) • Radiative shock experiments on French and Japanese lasers (Michaut) • “Echanges et Mélanges” : FPA-AME internal seminars (Stasinska) • Several operations in french “Programmes Nationaux” (PNPS, PNG, PCMI)

  6. Other activities: International conferences Organization as chairs or co-chairs • Conference « Exoplanets in Multi-Body Systems » Torun (Poland) (4 days, 2008) [Schneider] • Conference « The Cosmic Odyssey of the Elements » Aegina (Greece) (5 days, 2008) [Stasinska] • Conference « Planetary Nebulae as Astronomical Tools » Gdansk (Poland) (5 days, 2005) [Stasinska] • Conference « Elements stratifications in stars: 40 years of atomic diffusion » Mons (France), 2005 [Alecian] • Jenam 2007 EAS-S2 Meeting, Yerevan (Armeny) [Alecian] • Workshop « Super-Earths » Nantes (France) (3days, 2008) [Schneider] • Workshop « Oxygen in the Universe » la Colle-sur-Loup (France) (5 days, 2008) [Stasinska] • Workshop « La Théorie de la Relativitéd'Echelle, une base commune àune vision structurelle du monde » Avignon (France) (2 days 2007) [Nottale] • Workshop  « Planetary Nebulae Near and far » Sasek (Poland), (11 days, 2008) [Stasinska] 6

  7. Other activities:Schools • « numerical experiments on collisionless plasma » Meudon CIAS (France) (5 days) 2005, 2006, 2007, 2008 [Grappin] • « From the land of salt to the heavens of SALT » Krakow (Poland) (5 days, 2007) [Stasinska] • « Physique Stellaire autour des Grands Lasers » Aussois (France) (5 days, 2008) [Zahn] • « Nucléosynthèse stellaire 50 ans après B2FH » Aussois (France) (5 days, 2006) [Zahn] • « Les champs magnétiques stellaires » la Rochelle (France) (5 days, 2007) [Zahn] • « Interaction dans les systèmes composites : étoiles, disques et planètes » Oléron (France) (5 days, 2005) [Zahn]. 7

  8. Other activities: Teaching (other thanstatutory obligations) • Cours de physique des plasmas à l'Ecole d'Ingénieurs EPF [Michaut] • Cours de Fortran 90/95 en M2  l'Ecole Doctorale Astronomie et Astrophysique d'Ile de France [Michaut] • Intervention en collège (classe de 5ème et 4ème) • Master de sciences chirurgicales, Faculté de médecine Denis Diderot, 2008, 2009. "Relativité d'échelle en biologie". (2h)[Nottale] • cours 3ème cycle à Mexico (2 a 4 heures, 2005, 2006, 2007, 2008) [Stasinska] • cours à la XVIII Canary Island Winterschool « The emission Line Universe” : (2006, 5 heures) [Stasinska] • cours 3ème cycle à l'Université de Beijing (4 heures, 2007) [Stasinska] • cours 3ème cycle à l'Université de Sao Paulo (4 heures, 2007) [Stasinska] • Cours Obs. Paris [Schneider]

  9. Main collaborations in France • LUTH, GEPI, LESIA (Observatoire de Paris) • IGPG • OHP • LULI, Ecole Polytechnique Département de Physique Théorique et Appliquée • CEA/DIF Department of Atmospheric, Oceanic and Space Sciences • CNES • ESA • CETP, université Paris-Sud, Laboratoire de Mathématiques d'Orsay, • Centre des Sciences de la Terre, Université de Dijon • Université Versailles-St Quentin • ENS Ulm, Equipe Genexpress, Génomique Fonctionnelle et Biologie des Systèmes pour la Santé • UMR 6012 Espace, Université d'Avignon • UMR 5572 (LATT-Toulouse) • UMR 5024 (GRAAL-Montpellier) • ENS-Lyon • UMR 6202 – OCA Nice 9

  10. Main collaborations abroad In Europe Astrium collaboration: 6 european lab Austria : Vienna Observatory Belgium: ROB, Bruxelles, IAG Liège, ULB Bruxelles Germany: NRL, IPP, Max-Planck Garching Italy: Obs. Florence Poland: N. Copernicus Astronomical Centre, Warszawa and Torun, Krakow Observatory UK: University of York Graduate School of Engineering Ukraine: Obs-Kiev Outside Europe Arménie: BAO Brazil: UFSC-Florianopolis, IAG- Sao Paulo Canada: Université de Montréal (PQ), Université de Moncton (NB) Israel: Ben Gurion University, Beer Sheval Japan: Osaka University  Mexico: UNAM-Mexico, Morelia, Ensenada, INAOE-Puebla South Africa: University of Cape Town Spain: IAA-Granada Switzerland: Obs-Geneva US: University of Michigan Department of Physics, IA Honolulu 10 10

  11. Scientific topics (without JAR) • Spectroscopic diagnostics of astrophysical plasmas • Turbulence, Sun, Solar Wind, and Jupiter magnetosphere • Exoplanets and Exobiology • Scale Relativity • Instabilities and mixing in stellar interiors • Theory and modelling of element transport processes in stars. • Turbulence experiment ATER

  12. Spectroscopic diagnostics of astrophysical plasmas G. Stasinska and collaborators Planetary nebulae and HII regions • design of methods to determine their chemical composition • comparison with other abundance indicators in galaxies (e.g. stars) • inferences on nucleosynthesis and on chemical evolution of galaxies Galaxies in the Sloan Digital Sky Survey • analysis of their spectra in terms of stellar content • analysis of their emission-line properties • inferences on evolution of galaxies and AGN populations 12

  13. Planetary nebulae and HII regions G. Stasinska, collab: UNAM(Mexico), INAOE (Mexico), CAMK (Poland), Geneva obs (CH) Development of a quick pseudo-3D photoionization code for assymetric nebulae : application to the most-oxygen poor PN (PN G 135.9+55.9) A scenario for the enrichment of the interstellar medium by metal-rich droplets which may explain the abundance bias in HII regions O/H in the Galactic bulge: PNe and giant stars give different answers!

  14. Galaxies in the Sloan Digital Sky Survey G. Stasinska, N. Vale-Asari collab: UFSC (Florianopolis, Brazil), IAG (Sao Paulo, Brazil) ~300,000 emission-line SDSS galaxies in a diagram to distinguish star-forming galaxies from AGN hosts. What are LINERs? the star formation histories of strong-line (left)and weak-line (right)galaxies show that most LINERs are retired galaxies Seyfert LINER star forming top: observed spectrum of a weak emission-line galaxy right:simple stellar populations accounting for the observed continuum bottom: residual spectrum showing emission lines 14

  15. Scientific topics (without JAR) • Spectroscopic diagnostics of astrophysical plasmas • Turbulence, Sun, Solar Wind, and Jupiter magnetosphere • Exoplanets and Exobiology • Scale Relativity • Instabilities and mixing in stellar interiors • Theory and modelling of element transport processes in stars. • Turbulence experiment ATER

  16. Turbulence, Sun and Solar Wind R. Grappin, J. Léorat, R. Pinto • Search for a self-consistent model of the solar wind Challenge : include deep layers density drop from 1 to 10-12 time scales 1 to 10-7 veryirregular spatial mesh • Chromospheric transition Transmit photons energy upwards Dissipate energy there into heat Conduct heat back downwards Radiate energy All steps unsteady, turbulent, widely ≠ time scales => CPU demanding

  17. Turbulence, Sun and Solar Wind R. Grappin, J. Léorat, R. Pinto Log perp. wavenumber Coordinate along loop • MHD turbulence with mean field Transmission of movements between distant points of photosphere via magnetic loops (chromospheric transition simplified) => Corona acts as a turbulent friction on photospheric dynamics (usual « line-tied » Boundary condition false) => Coronal heating works in spite of non-reflective solar surface 17

  18. Turbulence, Sun and Solar Wind R. Grappin, J. Léorat, R. Pinto Col S. Leygnac, 2009 • Chromospheric heating by P-waves Transmission of P-waves reduced with partial ionization • Coronal effects of Alfvén waves Generating solar plume in an isothermal corona 18

  19. Io-Jupiter interaction and acceleration F. Mottez, S. Hess (Ph-D), collab. P Zarka (LESIA) • Io-Jupiter decametric radio-emissions (Nançay, Karkhov) • The emissions are caused by accelerated electrons in the Io-Jupiter flux tube through maser cyclotron instability. • First observational characterisation of acceleration processes • Acceleration by Alfvén waves and by electrostatic double layers. • Simulation of e- acceleration • Simulation of electron motions + Alfvén waves and/or electric potential jumps. Computation of the maser cyclotron instability. Reconstruction of dynamic spectra : they are similar to those observed.

  20. Scientific topics (without JAR) • Spectroscopic diagnostics of astrophysical plasmas • Turbulence, Sun, Solar Wind, and Jupiter magnetosphere • Exoplanets and Exobiology • Scale Relativity • Instabilities and mixing in stellar interiors • Theory and modelling of element transport processes in stars. • Turbulence experiment ATER

  21. Exoplanets and Exobiology Juan Cabrera, Laurent Nottale, Jean Schneider • Final goal: • search for “biosignatures” on exoplanets (top priority of ESA “Cosmic Vision”). • Different actions on this pathway: • Detection of exoplanets • Understand the dynamics of multi-body exoplanetary systems • Modelling internal structure and atmospheres of exoplanets • Optimize and test future biosignatures • Detection by transits with the CoRoT satellite CoRoT (J. Schneider initiative): 6 giant planets discovered, The first transiting super-Earth with the smallest radius ever measured R = 1.65 REarth M < 11 MEarth (under refinement) • Detection by direct imaging and spectroscopy of atmospheres of super-Earths: SEE-COAST (PI) space telescope project to be submitted to ESA + NASA 2015-2025

  22. Exoplanets and exobiology Juan Cabrera, Jean Schneider Detection of multiplanet systems and of exo-moons by perturbation of transit epochs Detection of exo-moons by mutual events in direct imaging of exoplanets Modelling of atmospheres and internal structure Mass-radius relation of super-Earths as a function of composition (Grasset, Schneider & Sotin 2009) Modelling of silicate vapor of the atmosphere of CoRoT-Exo-7b

  23. Exoplanets and exobiology Juan Cabrera, Jean Schneider • Exobiology • Observational test of detectability of “Vegetation Red Edge” VRE: example of Earth as seen from remote space thanks to Earthshine's spectrum OHP results: http://www.science.gouv.fr/… VRE • In Antarctica: possibility to monitor 24h Earth's rotation in Earthshine. Test under way LUCAS experiment (PI), collaboration with IPG, GEPI, OHP, started summer 2008

  24. Exoplanets and exobiology Laurent Nottale • Dynamics of planetary systems • Architecture of planetary systems using Scale Relativity Semi-major axis observed distribution Nombre Mars Terre Mercure Venus Ceres Hygeia (a/M*)1/2

  25. Scientific topics (without JAR) • Spectroscopic diagnostics of astrophysical plasmas • Turbulence, Sun, Solar Wind, and Jupiter magnetosphere • Exoplanets and Exobiology • Scale Relativity • Instabilities and mixing in stellar interiors • Theory and modelling of element transport processes in stars. • Turbulence experiment ATER

  26. Scale Relativity L. Nottale, M.-N. Célérier, P. Galopeau (associé), D. Ceccolini (doctorant †2007) • Formation and evolution of gravitational structures • * Model of structure formation over many scales • * Hypothesis: fractality of space (additional to space-time curvature). • * Physical constrain: principle of relativity applied to scale transformations. • * Consequence: Schrödinger form of motion equations. • Dark potential • * Other form of these equations: fluid (Euler + continuity) + additional potential energy. This “dark potential”: • * Spontaneously appear as manifestation of fractal geometry • * Could account for (some of) the effects currently attributed to “dark matter”.

  27. Scale Relativity (suite) L. Nottale, M.-N. Célérier, P. Galopeau (associé), D. Ceccolini (doctorant) • Physics: foundation of quantum mechanics and gauge theories • Derivation of the “postulates” of quantum mechanics in a non-differentiable and fractal geometric framework + principle of scale relativity: • Quantum tools (complex, spinor, bispinor wave functions) and equations (Schrödinger, Pauli, K-G, Dirac), Born and von Neumann axioms, etc. • Applications to the quantum/classical transition and to fractal wave functions • Derivation of gauge fields and charges (Abelian and non-Abelian) from fractal geometryof space-time • Biophysics Application of the scale-relativity approach to self-organisation and multi-scale integration in system biology 28

  28. Comparaison between theoretical prediction and experimental values of strong coupling constant as(mZ) ScaleRelativity(continuation) L. Nottale, M.-N. Célérier, P. Galopeau (associé), D. Ceccolini (doctorant) Data: Particle Data Group 1992-2006 Theoretical prediction: 0.1165±0.0005 (1992) Accounting for top quark mass (known after 1992), becomes 0.1173±0.0004 (from expected critical value 4π2 of inverse coupling at Planck energy scale and running from Planck to Z scales using renormalization group equations with special scale-relativistic correction) Date of theoreticalprediction : 1992 ! (LN 1992, IJMPA 7,4899)

  29. Cosmological constant (« dark energy »): comparison between theoretical estimate (1993) and measured values ScaleRelativity(continuation) L. Nottale, M.-N. Célérier, P. Galopeau (associé), D. Ceccolini (doctorant) Date of theoretical estimate : 1993 ! (LN 1993, Fractal Space-Time and Microphysics, pp. 302-305) Expected value: ΩΛh2=0.38874±0.00012 (from calculation of gravitational self-energy density of quantum fluctuations) Gunn-Tinsley LN, Hubble diagram of Infrared ellipticals LN, age problem SNe, WMAP 1yr lensing SNeI SNe, WMAP 3yr lensing SNe, WMAP 5yr lensing Early observational estimates Recent measurements

  30. Scientific topics (without JAR) • Spectroscopic diagnostics of astrophysical plasmas • Turbulence, Sun, Solar Wind, and Jupiter magnetosphere • Exoplanets and Exobiology • Scale Relativity • Instabilities and mixing in stellar interiors • Theory and modelling of element transport processes in stars. • Turbulence experiment ATER

  31. Instabilities and mixing in stellar interiors J.-P. Zahn; A. S. Brun, S. Mathis (SAp/CEA, chercheurs associés) • Rotational mixing in stellar radiation zones That mixing explains the anomalies of chemical composition observed at the surface of stars and their internal rotation profile; the model is being applied to stars observed with CoRoT. • Thermohaline mixing in red giant stars • Due to an inversion of the molecular weight gradient, thermohaline instability accounts for the moderate enrichment in 3He of our Galaxy; until now 3He was overestimated with standard models (with C. Charbonnel).

  32. Instabilities and mixing in stellar interiors J.-P. Zahn; A. S. Brun, S. Mathis (SAp/CEA, chercheurs associés) convection zone field lines radiation zone rotation rate • A fossil field in the interior of the Sun? A fossil field in the radiative interior of the Sun would diffuse and penetrate into the convection zone, and it would imprint the differential rotation thereof on the whole radiation zone. Helioseismology proved the contrary: the radiation zone is in uniform rotation. Conclusion: the Sun has no such fossil field. • Future work • Modelling of CoRoT targets with rotational mixing. • Tidal evolution of extrasolar systems 33

  33. Scientific topics (without JAR) • Spectroscopic diagnostics of astrophysical plasmas • Turbulence, Sun, Solar Wind, and Jupiter magnetosphere • Exoplanets and Exobiology • Scale Relativity • Instabilities and mixing in stellar interiors • Theory and modelling of element transport processes in stars. • Turbulence experiment ATER

  34. Theory and modelling of element transport G. Alecian & collaborators (F. LeBlanc, M. Stift) Computed 2-D stratification Teff=8500K Dipolar field B: 20 kG at the pole Codes CaratStrat & CaratVisu (Alecian & Stift 2007) Ti Real B • Diffusion processes in magnetic atmospheres A new code for polarized radiation transfer and atomic diffusion Diffusion processes in stellar interiors 35

  35. Theory and modelling of element transport G. Alecian & collaborators (Gebran, Auvergne, Richard, Samadi, Weiss, Baglin) • Looking for pulsations throughCoRoTligthcurves Possibly the first detection of pulsations in a HgMn star.

  36. Scientific topics (without JAR) • Spectroscopic diagnostics of astrophysical plasmas • Turbulence, Sun, Solar Wind, and Jupiter magnetosphere • Exoplanets and Exobiology • Scale Relativity • Instabilities and mixing in stellar interiors • Theory and modelling of element transport processes in stars. • Turbulence experiment ATER

  37. Experimental hydrodynamics: ATER facility« Agitateur pour la Turbulence En Rotation » W. Mouhali , J. Léorat , T. Lehner R. Vitry • Motivations(1): find a driving configuration for fluid dynamo Precession forcing is closer to natural dynamos than contra-rotating impellers (cf Cadarache experiment). Large scale forcing is a priori favourable. • Motivations(2): hydro simulations at Re=UL/ν> 105 not feasible • Motivations (3): Physics issues:global circulation ? Differential rotation ? transition laminar/turbulent ? • Cylindrical container • (diameter= 300 mm, length between 300 and 400 mm) • Particle Image Velocimetry (home made) • Control parameter : precession rate =Ωp/Ωr • => Forcing m=1 modes + parity invariance(r->-r)

  38. Experimental hydrodynamic: ATER facility« Agitateur pour la Turbulence En Rotation » W. Mouhali , J. Léorat , T. Lehner R. Vitry Vorticity contours 6 successive times • Weak forcing: inertial waves (m=1) • Medium forcing: cyclonic vortices (quasi-steady non linear structures) Non-linear coupling (resonant triad) => differential rotation (m=0) • Above turbulence threshold: quasi-homogeneous turbulence Global rotation is inhibited 39

  39. Experimental hydrodynamic: ATER facility« Agitateur pour la Turbulence En Rotation » W. Mouhali , J. Léorat , T. Lehner R. Vitry • Related works in progress: • ellipsoïdal container to be installed on ATER (cf LGIT- Grenoble) • kinematical dynamo including cyclonic vortices (with R. Laguerre, ULB and SFEMaNS code) • Simulations of rotating flows with shear (Ivan Delbende, LIMSI and M. Rossi, UP6) Azimuthal speed in container frame : differential rotation (a typical example, discard r > 0.7) 40

  40. Prospects (1) • Planetary Nebulae and HII regions: Put chemical composition analysis on firmer grounds • Statistical studies of galaxies: Refine methods for low redshifts, extend them to higher redshifts and other wavelengths (Stasinska) • Study of the coupling of solar photosphere-corona-wind. Solar wind modelling: transport to 2D/3D the time-dependent model including dense layers (current work). Take into account radiative transfer in chromosphere (Grappin) • Detection by direct imaging. Detection of exo-moons by mutual events in direct imaging of exoplanets, LUCAS experiment (Schneider) • Continuation of the Scale Relativity development, namely about "dark potential" to account for (some of) the effects currently attributed to “dark matter” (Nottale) 41

  41. Prospects (2) • Modelling of CoRoT targets with rotational mixing. (Zahn) • Tidal evolution of extrasolarsystems (Zahn) • 3D-modelling of element distribution in magnetic atmospheres (Alecian) • The numerical challenge of time-dependent diffusion stellar atmospheres (Alecian) • Development of ATER : • ellipsoidal container to be installed on ATER (cf LGIT- Grenoble). • Kinematical dynamo including cyclonic vortices (with R. Laguerre, ULB and SFEMaNS code). • Simulations of rotating flows with shear (Ivan Delbende, LIMSI and M. Rossi, UP6) • + JAR prospects

More Related