1 / 21

Metal-Based Drugs: Novel Targets

Insulin Mimetic. Metal-Based Drugs: Novel Targets. Bulk elements. Trace elements. Possibly essential. Metallopharmaceuticals. H. He. Anti- Depressive. Li. Be. B. C. N. O. F. Ne. Na. Mg. Al. Si. P. S. Cl. Ar. K. Ca. Sc. Ti. V. Cr. Mn. Fe. Co. Ni. Cu. Zn. Ga.

john
Télécharger la présentation

Metal-Based Drugs: Novel Targets

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Insulin Mimetic Metal-Based Drugs: Novel Targets Bulk elements Trace elements Possibly essential Metallopharmaceuticals H He Anti- Depressive Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba Ln Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Th Pa U Antiulcer Diagnostic Agents: X-ray, MRI Anticancer Antiinfective Radiopharmaceuticals Antiarthritic

  2. Current ARC funded projects Kinetics and mechanism of binding of platinum anticancer drugs to DNA Development of metal-based antimitochondrial antitumour agents Metal-Based Drugs: New targets

  3. DNA Interactions of platinum anticancer drugs University of Western Australia Prof Sue Berners-Price Dr Junyong (June) Zhang Don Thomas Joe Moniodis Virginia Commonwealth University, USA Prof Nick Farrell (Network International Advisory panel USA) Funding ARC Discovery (2002-4), ARC Linkage Int (2002-4) NIH, NSF, Am Cancer Soc. Facilities UWA NMR Facility (600, 500 MHz Spectrometers)

  4. H N C l H N C l C l N H 3 3 3 P t P t P t H N C l H N N H H N N H ( C H ) 3 2 3 3 2 2 n ID (L1210) = 2.4 m M 50 ID (L1210) = 3.03 m M 50 TWI%(LX-1) = 38@4.0 mg/kg TWI%(LX-1) = 72@3.0 mg/kg 4+ C l N H H N N H ( C H ) H N N H 3 3 2 2 n 2 3 P t P t P t H N N H ( C H ) H N N H H N C l 3 2 2 n 2 3 3 1 ,0,1/t,t,t; (n = 6,6) (BBR3464) ID (L1210) = 0.0094 m M 50 TWI%(LX-1) = 73@0.3 mg/kg 2+ Cisplatin 1,1/t,t; n=6 (BBR3005)

  5. 4+ C l N H H N N H ( C H ) H N N H 3 3 2 2 6 2 3 P t P t P t H N N H ( C H ) H N N H H N C l 3 2 2 6 2 3 3 aromatic (G H8) 1H NMR : 14-mer DNA duplex + 1.6 mM 15N- T-CH3 (4 h 25 oC) Pt-NH2 imino Pt-NH3 d/ppm 14 12 10 8 6 4 2 0

  6. 4+ C l N H H N N H ( C H ) H N N H 3 3 2 2 6 2 3 Pt-NH3 P t P t P t H N N H ( C H ) H N N H H N C l 3 2 2 6 2 3 3 Linker -64 -62 End Groups -60 4.6 4.4 4.2 4.0 [1H, 15N] NMR : 14-mer DNA duplex (4 h 25 oC) + 1.6 mM 15N- Pt-NH2 (H2O) End Groups -48 15N -46 -44 Linker 4.6 5.4 5.2 5.0 4.8 1H

  7. 1,4- and 1,6-GG Interstrand Crosslink Formation Cox et al J. Am. Chem. Soc. 123, 1316-1326 (2001) Hegmans et al. J. Am. Chem. Soc. (2004) in press.

  8. 4+ Y H N N H H N N H H N 3 2 2 3 3 P t P t P t N H H N N H H N N H Y 3 3 2 2 3 5'-d(T-A-T-G-T-A-T-A-C-A-T-A) 5'-d(A-T-A-T-G-T-A-C-A-T-A-T) 3'-d(A-T-A-C-A-T-A-T-G-T-A-T) 3'-d(T-A-T-A-C-A-T-G-T-A-T-A) (1,6-GG) (1,4-GG) Kinetics of formation of 1,6- and 1,4- Interstrand Crosslinks Y/Y Cl/Cl G/G G/G Cl/Cl [Pt2] (mM) G/Cl G/Cl

  9. Formation of a 1,4- GG Interstrand Crosslink Guanine N7

  10. Current ARC funded projects Kinetics and mechanism of binding of platinum anticancer drugs to DNA Development of metal-based antimitochondrial antitumour agents Metal-Based Drugs: New targets

  11. [Au(dppe)2]Cl: Antitumour Activity • Active against a spectrum of mouse tumour models (4 i.p. tumours; 3 s.c. tumours) • Active in a cisplatin-resistant subline of P388 leukaemia • Acts synergistically with cisplatin against moderately advanced P388 leukaemia • Berners-Price at. al. (1986) Cancer Research 46, 5486

  12. + R R 1 3 Ar P Ar P R R P P 4 2 Ar Ar R -R 1 4 M Ar Ar or P P or N N N Ar Ar 3-pyridyl 4-pyridyl 2-pyridyl M = Au(I), Ag(I), Cu(I) Metal complexes of bidentate pyridyl phosphines

  13. / CH 1/ -cisR / X SKOV-3 41 M/ -cisR o 1000 + R R´ P P 100 R R´ M IC 50 10 (mM) R R´ P P [Au(dppe)2]+ R R´ 1 0.1 0.0 0.01 0.1 1 10 100 Partition coefficient Cytotoxic potency against human ovarian tumours vs partition coefficient

  14. 100 100 log Kw 5.4 log Kw 2.2 log Kw 2.9 10 10 1 1 0 0 0 5 5 5 10 10 10 15 15 15 20 20 20 Antitumour activity vs log kw Relative Tumour Volume Colon 38 mouse tumour model [Au(dppe)2]Cl (R = Ph) R = 4-pyridyl R = 2-pyridyl 100 10 1 Time (days) McKeage et al. Cancer Chemother. Pharmacol. 2000, 46, 343

  15. Apoptosis cytochrome c AIF released from mitochondria by apoptotic stimuli Mitochondrial Control of Apoptosis Cytoplasm inhibits apoptosis, binds ICE proteins and suppresses release of cytochrome c and AIF + - ICE + CED-4 Bcl2 - accumulate within mitochondria Antitumour Lipophilic Cations ? Mitochondria

  16. Mitochondrial Permeability Transition Pore Complex Voltage Dependent Anion Channel Hexokinase Benzodiazepin receptor å Bax, Bak Bcl-2 Intermembrane space Creatine Kinase Adenine Nucleotide Translocase Cyclophilin-D Matrix

  17. Mitochondrial Permeability Transition Pore Complex Inducers: Ca2+, ROS Inducers: PBR ligands å Inducers:BH3 peptides Bax, Bak Bcl-2 Intermembrane space Inducers: Ca2+, ROS, NO thiol oxidation Inhibitor: thiol reduction Inhibitor:Cyclosporin A Matrix

  18. Targeting mitochondrial cell death pathways in chemotherapy More than 20 cytotoxic drugs are now known to induce cell death by permeabilizing mitochondrial membranes (demonstrated in a cell-free system) e.g. • Etoposide, Paclitaxel, • PBR ligands (PK11195) • ANT ligands : Ionidamine, Arsenite, CD437 See Debatin, Poncet, Kroemer, Oncogene, 2002 21 8786-8803

  19. O A c H H O A c O S A u A c O P E t 3 H O A c H H Antimitochondrial activity of Auranofin • At submicromolar concentrations Auranofin induces mitochondrial permeability transition (requires Ca2+, cyclosporin-A sensitive) • Attributed to inhibition of mitochondrial thioredoxin reductase • Au(I) binds to active site selenocysteine Rigobello, Bindoli et al. Br. J. Pharmacol. (2002) 136 1162

  20. Antimitochondrial activity Absorbance I II Time (min) mg Au/mg protein III IV

  21. University of Western Australia Prof Sue Berners-Price Prof David Day A/Prof Murray Baker A/Prof George Yeoh Dr Peter Barnard James Hickey Funding ARC Discovery (Berners-Price, Baker 2004-6) Gold Phosphine and Carbene Complexes as Potential Antimitochondrial Agents: Design,Synthesis and Biological Chemistry Collaborators A/Prof Mark McKeage, Bruce Baguley (Auckland) Prof Peter Sadler (Edinburgh) (Network International Advisory panel (EU))

More Related