1 / 83

Suzdal-2007

Международная конференция «50-летие Международного геофизического года и Электронный геофизический год». Возможные региональные последствия глобальных изменений климата И.И . Мохов Институт физики атмосферы им. А.М. Обухова РАН Possible regional consequences of global climate changes

joie
Télécharger la présentation

Suzdal-2007

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Международная конференция «50-летие Международного геофизического годаи Электронный геофизический год» Возможные региональные последствия глобальных изменений климата И.И. Мохов Институт физики атмосферы им. А.М. Обухова РАН Possible regional consequences of global climate changes Igor I. Mokhov A.M. Obukhov Institute of Atmospheric Physics RAS mokhov@ifaran.ru Suzdal-2007

  2. Selected references Akperov M.G.,M.Yu. Bardin, E.M. Volodin, G.S. Golitsyn, and I.I. Mokhov, 2007:Izvestiya, Atmospheric and Oceanic Physics Arpe, K., L. Bengtsson, G.S. Golitsyn, I.I. Mokhov, V.A. Semenov, and P.V. Sporyshev, 1999: Doklady Earth Sciences Arpe, K., L. Bengtsson, G.S. Golitsyn, I.I. Mokhov, V.A. Semenov, and P.V. Sporyshev, 2000: Geophysical Research Letters Golitsyn, G.S., I.I. Mokhov, and V.Ch. Khon, 2000: In: Ecological Problems of the Caspy Golitsyn, G.S., L.K. Efimova, I.I. Mokhov, V.A. Rumyantsev, N.G. Somova, and V.Ch. Khon, 2002: Water Resources Golitsyn, G.S., L.K. Efimova, I.I. Mokhov, V.A. Tikhonov, and V.Ch. Khon, 2004: Meteorology and Hydrology Golitsyn, G.S., I.I. Mokhov, M.G. Akperov, and M.Yu. Bardin, 2006: Izvestiya, Atmospheric and Oceanic Physics Khon, V.Ch., I.I. Mokhov, E. Roeckner, and V.A. Semenov, 2007: Global and Planetary Change Khon, V.Ch., 2007:British-Russian Conference“Hydrological Impact of Climate Change”, Novosibirsk Meleshko, V.P., G.S. Golitsyn, V.A. Govorkova, P.F. Demchenko, A.V. Eliseev, V.M. Kattsov, V.Ch. Khon, S.P. Malevsky-Malevich, I.I. Mokhov, E.D. Nadyozhina, V.A. Semenov, P.V. Sporyshev, 2004: Meteorology and Hydrology Mokhov, I.I., and V.Ch. Khon, 2002: Doklady Earth Sciences Mokhov, I.I., and V.Ch. Khon, 2002: Meteorology and Hydrology Mokhov, I.I., J.-L. Dufresne, H. Le Treut, V.A. Tikhonov, and A.V. Chernokulsky, 2005: Doklady Earth Sciences Mokhov, I.I., E. Roeckner, V.A. Semenov, and V.Ch. Khon, 2006: Doklady Earth Sciences Mokhov, I.I., E. Roeckner, V.A. Semenov, and V.Ch. Khon,2006: Water Resources Mokhov, I.I., V.A. Semenov, and V.Ch. Khon, 2003: Izvestiya, Atmospheric and Oceanic Physics Mokhov, I.I., A.V. Chernokulsky, and I.M. Shkolnik, 2006: Doklady Earth Sciences Mokhov, I.I., V.Ch. Khon, and E. Roeckner, 2006: Doklady Earth Sciences Mokhov, I.I., 2007:British-Russian Conference“Hydrological Impact of Climate Change”, Novosibirsk

  3. Surface air temperature Изменения приповерхностной температуры Russia NH Global

  4. Surface air temperature trends from observations (1975-2004) Annual means

  5. Global surface temperature trends (for 100-year moving intervals) Тренды глобальной приповерхностной температуры для 100-летних скользящих интервалов по данным наблюдений. Вертикальными отрезками отмечены среднеквадратические отклонения. Также приведены соответствующие коэффициенты корреляции (шкала справа).

  6. Разныемодельные оценки 100-летних трендов глобальной приповерхностной температуры: 1 – КМ ИФА РАН А2-GHG, 2 – КМ ИФА РАН B2-GHG, 3 – CCCma A2, 4 – CCCma B2, 5 – CCSRNIES A2, 6 – CCSRNIES B2) в сравнении с оценками по данным наблюдений (черная кривая 7).

  7. Характерные особенности потепления Увеличение приповерхностной температуры Изменение режимов осадков, снежного покрова, влагосодержания почвы и речного стока Уменьшение площади морских льдов в Арктике Уменьшение распространения вечной мерзлоты Изменение режимов циклонов и антициклонов в средних и полярных широтах Изменение режимов засух и пожаров

  8. Global climate simulations are analyzed in comparison with observations for an assessment of regional changes. Both coupled general circulation models and global model of intermediate complexity are used with different anthropogenic scenarios for the 21st century. Special attention is given to estimates of possible changes in the Volga, Ob, Yenisei and Lena rivers basins. Regional climate extremes like droughts and fires are also analyzed with the use of regional model simulations.

  9. Surface air temperature changesin winter (relative to 1981-2000)(7 models ensemble means) 2041-2060 А2 B2 2080-2099 A2 B2

  10. Surface air temperature increasein summer (relative to 1981-2000) (7 models ensemble means) 2041-2060 А2 B2 2080-2099 A2 B2

  11. Changes of precipitation (%) relative to (1981-2000) from ensemble-mean (7 models) simulationsin winter 2041-2060 SRES-B2 SRES-А2 2080-2099 SRES-A2 SRES-B2

  12. Precipitation changes (%) relative to (1981-2000) from ensemble-mean (7 models) simulationsin summer 2041-2060 SRES-A2 SRES-B2 2080-2099 SRES-B2 SRES-A2

  13. Changes of snow mass (кg/m2) at the beginning of Spring (March) 2041-2060 А2 B2 A2 B2 2080-2099

  14. IAP RAS CM simulations

  15. a) Satellite data (SMMR-SSM/I) b) Observations (HadISST) c) HadGEM1 Model d) HadCM3 Model Продолжительность ледового сезона (1980-1999 гг.)Duration of seasons with sea ice (days) f) GFDL-CM2.1 Model g) CCSM3 Model e) GFDL-CM2.0 Model h) IPSL-CM4 Model

  16. Морской лед в Арктике (Северный морской путь) Arctic Sea Ice (Northern Sea Route) Changes in time intervals (days) with a potential navigation relative to 1961-1990 from ECHAM5/MPI-OM simulationswith SRES-A2 scenario: 1) 2001-2030, 2) 2031-2060, 3) 2061-2090.

  17. Selected watersheds in Russia and contiguous regions Baltic Pechora Dnepr Volga Lena Yenisei Ob

  18. Precipitation changes (%) in watersheds, SRES-B2 1 – 2041-2060 2 – 2080-2099 Winter Summer

  19. Changes of annual-mean precipitation (mm/day) in watershedsduring the 21st centuryrelative to the end of the 20th century (1981-2000) SRES-А2and SRES-В2(7 models) Pechora & N.Dvina Lena 95% 95% 95% 95% Dnepr & Don Volga & Ural 95% 95% 95% 95%

  20. Changes of runoff (km3/yr) in watersheds in the 21st century relative to the end of the 20th century (1981-2000). SRES-В2 Pechora & N.Dvina Lena 95% 95% 95% 95% Dnepr & Don Volga & Ural 95% 95% 95% 95%

  21. Eurasian rivers annual runoff changes (%, 30-year moving averages) [Volga&Ural (left-upper), Ob (right-upper), Yenisey (left-lower), Lena (right-lower)] Different scenarios 1-4 – simulations (IAP RAS global climate model), 5 - observations

  22. Precipitation changes (%) to the end of the 21st century relative to the end of the 20th century IPCC-AR4 Simulations (SRES-A1B) (Ensemble Means) Winter Summer

  23. River Runoff (1961-1990) IPCC-AR4 simulations in comparison with observations Volga Ob Yenisei Lena

  24. River Runoff Changes (%) to the end of the 21st century relative to the end of the 20th century IPCC-AR4 Simulations (SRES-A1B) Ob Volga Lena Yenisei

  25. Trends (%/100 years) of the winter precipitation characteristics in the 21st century as simulated by the ECHAM5/MPI-OM with the use SRES-B1 and SRES-A2

  26. Trends (%/100 years) of the summer precipitation characteristics in the 21st century as simulated by the ECHAM5/MPI-OM with the use SRES-B1 and SRES-A2

  27. The number of cyclones and anticyclones (the double number of cyclone and anticyclones days) at 20-80 0N for 1952-2000 obtained from NCEP/NCAR reanalysis and INM model for April-September and October-March. <N> is a mean value for cyclone-day and anticyclone-day.

  28. IPSL-CM2 (with carbon cycle)SRES-A2

  29. Coefficients of correlation(60-years running periods) of Net Primary Production (NPP) with precipitation (a) and soil water content (b) in May-July for European part of Russia in mid-latutudes from IPSL-CM2 simulations with SRES-A2 scenario Коэффициенты корреляции биопродуктивности (NPP) с количеством осадков (а) и влагосодержанием почвы (б)в мае-июле для европейской территории России в средних широтах по модельным расчетам для 60-летних скользящих интервалов

  30. DYNAMICS OF FIRES NUMBERS AND BURNED AREA IN RUSSIA Korovin and Zukkert 2003, updated

  31. Index of Potential Forest Fire Danger (IF)MGO Regional Climate Model (Summer Means for 1991-2000, <IF>)

  32. Index of Potential Forest Fire Danger (IF)MGO Regional Climate Model (Summer Means for 1991-2000, <IF>)

  33. Forest Fires MGO Regional Climate Model SRES-A2 [IF(Δt) - IF(1991-2000)] / IF(1991-2000) Δt: 2041-2050 Δt: 2091-2100

  34. Характерные особенности потепления Увеличение приповерхностной температуры (увеличение экстремальных температур) Изменение режимов осадков, снежного покрова, влагосодержания почвы и речного стока (Увеличение частоты интенсивных осадков) Уменьшение площади морских льдов в Арктике Уменьшение площади распространения вечной мерзлоты (сезонно замерзающей почвы) Изменение режимов циклонов и антициклонов в средних и полярных широтах (блокингов, центров действия атмосферы, например общее ослабление Сибирского зимнего антициклона) Изменение режимов засух и пожаров (регионы повышенного риска лесных пожаров, например в Забайкалье)

  35. Температурные тренды для последнего 30-летия ХХ века по расчетам с HadCM3 и КМ ИФА РАН при разных сценариях (форсингах)

  36. Scenarios

  37. SCENARIOS OF MAIN GREENHOUSE GASES AND AEROSOLS INCREASES IN 21st CENTURYSCENARIOS А2 & В2 CO2 CH4 N2O Аэрозоль SO4

  38. РОСТ КОНЦЕНТРАЦИИ ПАРНИКОВЫХ ГАЗОВВ 21-м СТОЛЕТИИСЦЕНАРИИ SRES-А2 и SRES-В2 CO2 CH4 CO2 N2O

  39. Higher emissions lead to more warming later in century. 3.4oC 2.8oC 1.8oC Warming of about 0.2oC per decade for next two decades for a range of scenarios Projected global average warming High scenario Medium scenario Low scenario Further warming of ~0.6oC after concentrations stabilized

  40. Forest Fires MGO Regional Climate Model SRES-A2 [IF(Δt) - IF(1991-2000)] / IF(1991-2000) Δt: 2041-2050 Δt: 2091-2100

  41. Changes (%) of soil moisture and runoff relative to relative to (1981-2000) inspringand summer,SRES В2(7 models ensemble means) 2041-2060 Spring Summer 2080-2099 Spring Summer

  42. Изменения нормированных значений NPP (a) и NEP (б) для европейской части России (в средних широтах) в мае-июле по расчетам с КМОЦ IPSL-CM2 при увеличении антропогенной эмиссии СО2 согласно сценарию SRES-A2 с учетом всех обратных связей (сплошные тонкие кривые) и без антропогенных изменений климата (тонкий пунктир пунктир) нормировались на их соответствующие средние значения в мае-июле для 30-летнего периода 1961-1990 гг. Жирными кривыми отмечены соответствующие 30-летние скользящие средние для NPP и NEP.

  43. Depth increase of melted soil (cm) in August in the 21st century for regions with permafrost 2041-2060 A2 B2 2080-2099 B2 A2

  44. Simulations show a general increase of the annual mean precipitation and rain intensity for Russia in the XXI century, but the wet day probability increases only in the northern latitudes. These tendencies are related basically to winter seasons, while in summer the decrease of wet day probability was simulated for the main part of Russia. It is resulted in the decrease of summer precipitation over significant part of Russia, though the rain intensity in summer for Russia generally increases. • Model results display that the increase of temperature in the XXI century is accompanied in the mid-latitudes over land by the decrease of precipitation in spring-summer and by the increase of drought indices. Drought indices display also the general variability increase in the XXI century. • Model results display an increase of mean values of regional precipitation and runoff in the Ob, Yenisei, Lena, Volga and Neva rivers basins. Alongside with such a general tendency a remarkable variations with an increase of variance of regional hydrological characteristics have been noted from model simulations. In particular, models show some decrease of the Volga, Ob and Yenisei rivers runoff at the beginning of XXI century. • Sensitivity of permafrost conditions in the Northern Hemisphere as a whole from model simulations depends on forcing only slightly and agrees with paleoreconstructions.

More Related