1 / 34

Servei d’Estadística Universitat Autònoma de Barcelona

Servei d’Estadística Universitat Autònoma de Barcelona. Inferencia estadística para una población. Introducción Intervalos de confianza Pruebas de hipótesis T-TESTS ANOVAs. Estadística descriptiva. Inferència estadística. Objetius:

jorryn
Télécharger la présentation

Servei d’Estadística Universitat Autònoma de Barcelona

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Servei d’Estadística Universitat Autònoma de Barcelona Inferencia estadística para una población • Introducción • Intervalos de confianza • Pruebas de hipótesis • T-TESTS • ANOVAs Sesión 2: Inferencia estadística para una población

  2. Estadística descriptiva Inferència estadística Objetius: Exploració de les dades buscant estructures i patrons destacables Respondre qüestions/hipòtesis específiques plantejades abans de tenir les dades Conclusiones: S’apliquen només als individus i circumstàncies per a les quals s’han recollit les dades S’apliquen a un conjunt ampli d’individus o a una àmplia classe de circumstàncies Les conclusions són informals basades en allà que es pot observar en les dades Les conclusions són formals i recolzades en una declaració de confiança en aquestes. Servei d’Estadística Universitat Autònoma de Barcelona El quadre següent expressa les diferèncias bàsiques entre les dues anàlisis: Sesión 2: Inferencia estadística para una población

  3. Servei d’Estadística Universitat Autònoma de Barcelona • L’estadística descriptiva és un primer pas essencial per a realitzar • inferència estadística. Les dues anàlisis han de cooperar. • Per a poder dur a terme inferència estadística es requereix que • el patró de les dades sigui raonablement regular. • El disseny de l’experiment també està molt relacionat amb la qualitat • de la inferència estadística, així com de les conclusions que • d’aquesta es derivin. Inferir significa treure conclusions de les dades tenit en compte la variació deguda a l’atzar Sesión 2: Inferencia estadística para una población

  4. Servei d’Estadística Universitat Autònoma de Barcelona • Introducción: el análisis de los datos versus la inferencia estadística Después de llevar a cabo un análisis de los datos el objetivo es poder generalizar los resultados para conjuntos más grandes de individuos así como poder sacar conclusiones a partir de los datos. La PROBABILIDAD permite calibrar el poder de nuestras conclusiones Sesión 2: Inferencia estadística para una población

  5. Servei d’Estadística Universitat Autònoma de Barcelona • Variables aleatorias Los datos que habitualmente se analizan provienen de un experimento aleatorio: Aleatorios o estocásticos Experimentos Noaleatorios o deterministas Un experimento aleatorio es aquel que bajo las mismas condiciones puede producir resultados diferentes pero con una distribución regular de resultados para un número grande de repeticiones. Un experimento es determinista si bajo las mismas condiciones siempre conduce a un mismo resultado. Las variables aleatorias definen de forma numérica los resultados de un experimento aleatorio. Esto es son aplicaciones que transforman los resultados de un experimento aleatorio en números con el fin de poder realizar las operaciones más usuales. Sesión 2: Inferencia estadística para una población

  6. Servei d’Estadística Universitat Autònoma de Barcelona • Antes de realizar cualquier inferencia estadística es necesario identificar la distribución de probabilidad de la variable aleatoria que se pretende analizar. • Algunos instrumentos para ello son: • Histograma, rango de la variable. • Gráficos de caja • Pruebas de ajuste a una distribución (Test de Kolmogorov-Smirnoff). • Para llevar a cabo estos contrates en SPSS seguiremos: • Analizarla opción Pruebas no parametricas K-S de una muestra donde se debe seleccionar como distribución de prueba: Normal Sesión 2: Inferencia estadística para una población

  7. Servei d’Estadística Universitat Autònoma de Barcelona Intervalos de confianza En inferencia estadística uno de los instrumentos más comunes son los intervalos de confianza para estimar el valor de un parámetro de la población. Un intervalo de confianza del C% para un parámetro es un intervalo de valores calculado a partir de los datos de la muestra utilizando un método que tiene un probabilidad C de que dicho intervalo Contenga el verdadero valor del parámetro. Sesión 2: Inferencia estadística para una población

  8. Servei d’Estadística Universitat Autònoma de Barcelona La media muestral y la desviación estándar son buenos estimadores puntuales de la media y la desviación estándar de la población. Dado que los datos son las observaciones de una variable aleatoria, estos estimadores son a la vez variables aleatorias. Por lo tanto tienen una determinada distribución, que en el caso de la media es Normal. Así pues podemos calcular un intervalo de valores [a,b] tales que = C Sesión 2: Inferencia estadística para una población

  9. Servei d’Estadística Universitat Autònoma de Barcelona Gráficamente: para una normal tipificada, un intervalo de confianza del 95% se puede representar como: La probabilidad de que una variable normal tipificada tome valores en el intervalo [-1.96,1.96] es del 95%. 95% 2.5% 2.5% Sesión 2: Inferencia estadística para una población

  10. Servei d’Estadística Universitat Autònoma de Barcelona Para llevar a cabo una representación gráfica de los intervalos de confianza debemos seguir: Graficos la opción Barras de error Sesión 2: Inferencia estadística para una población

  11. Servei d’Estadística Universitat Autònoma de Barcelona EJEMPLO: Salario de universitarios Intervalos de confianza 95% del salario medio: para las mujeres (24143 $, 25395 $) para los hombres (26489 $, 27563 $) Fuertes diferencias entre el salario de hombres y mujeres Sesión 2: Inferencia estadística para una población

  12. Servei d’Estadística Universitat Autònoma de Barcelona Otra forma más general de obtener los intervalos de confianza para la media (o medias con SPSS es mediante el menú Analizar la opción Comparar medias Sesión 2: Inferencia estadística para una población

  13. Servei d’Estadística Universitat Autònoma de Barcelona Pruebas de hipótesis Un segundo bloque de instrumentos para la inferencia estadística son las pruebas de hipótesis: Evalúan la evidencia de una afirmación sobre la población. En estadística una afirmación sobre la población se plantea en forma de hipótesis de trabajo. Las dos hipótesis complementarias se llaman: Hipótesis nula (H0) Hipótesis alternativa o de investigación (H1) Las hipótesis hacen siempre referencia a los parámetros de la población. Sesión 2: Inferencia estadística para una población

  14. Servei d’Estadística Universitat Autònoma de Barcelona • Una prueba de hipótesis es un procedimiento que especifica: • Para qué valores muestrales la decisión será no rechazar la hipótesis nula. • Para qué valores muestrales la hipótesis nula será rechazada a favor de la alternativa. • P-valor: probabilidad que, bajo H0 el estadístico de contraste tome un valor almenos tan alejado como el realmente obtenido. • Cuanto más pequeño sea el p-valor mayor es la evidencia en contra de H0. Sesión 2: Inferencia estadística para una población

  15. Servei d’Estadística Universitat Autònoma de Barcelona En un contraste de hipótesis, debemos aceptar o rechazar una de las dos hipótesis planteadas. Deseamos que nuestra decisión sea correcta, pero a veces no lo será. Hay dos tipos de decisiones incorrectas: Rechazar H0 cuando de hecho es cierta: error de tipo I Aceptar H0 cuando realmente es cierta H1: error de tipo II Observación: el error tipo I = nivel de significación = α Sesión 2: Inferencia estadística para una población

  16. No rechazar la hipótesis nula Rechazar la hipótesis nula (aceptar la hipótesis alternativa) Servei d’Estadística Universitat Autònoma de Barcelona En esquema: Planteamiento del problema Hipótesis nula y alternativa Recogida de datos Test estadístico Sesión 2: Inferencia estadística para una población

  17. Servei d’Estadística Universitat Autònoma de Barcelona Tipo de test estadístico • En primer lugar el investigador debe identificar la naturaleza de la variables que desea estudiar. Es decir: • Variable Respuesta • Distribución (continua, ordinal, categórica) • Variable Explicativa • Número de grupos o niveles • Así cómo la idoneidad del tipo de prueba: • Homogeneidad • Grupos bien balanceados Sesión 2: Inferencia estadística para una población

  18. Servei d’Estadística Universitat Autònoma de Barcelona Variable respuesta Normal Para comparar una variable respuesta entre dos muestras independientes cuando dicha variable sigue una distribución normal se utiliza la prueba: prueba T de Student (T-Test): La hipótesis que contrasta es: H0: m1= m2 Las medias son iguales H1: m1 m2 Las medias son diferentes Sesión 2: Inferencia estadística para una población

  19. Servei d’Estadística Universitat Autònoma de Barcelona Ejemplo: Deseamos estudiar si la disminución de tensión arterial de los pacientes que han tomado el tratamiento 2 es superior a los pacientes que han tomado el tratamiento 1. Supondremos que la distribución de la variable DIF es Normal. La hipótesis que deseamos contrastar es: H0: m1= m2 La disminución es igual H1: m1 m2 La disminución es diferente Sesión 2: Inferencia estadística para una población

  20. Servei d’Estadística Universitat Autònoma de Barcelona Sesión 2: Inferencia estadística para una población

  21. Servei d’Estadística Universitat Autònoma de Barcelona Sesión 2: Inferencia estadística para una población

  22. Servei d’Estadística Universitat Autònoma de Barcelona Sesión 2: Inferencia estadística para una población

  23. Servei d’Estadística Universitat Autònoma de Barcelona Variable respuesta Categórica Para comparar una variable respuesta entre dos muestras independientes cuando dicha variable es categórica se utilizan las pruebas: prueba c2, prueba Exacta de Fisher o prueba RV: La hipótesis que contrastan es: H0: La variable respuesta es independiente de la variable explicativa (Los grupos de tratamiento son homogéneos). H1: La variable respuesta NO es independiente de la variable explicativa (Los grupos de tratamiento no son homogéneos). Sesión 2: Inferencia estadística para una población

  24. Servei d’Estadística Universitat Autònoma de Barcelona Ejemplo: Deseamos estudiar si la distribución según estatus social es homogénea en ambos grupos de tratamiento. La hipótesis que deseamos contrastar es: H0: La distribución según estatus social es homogénea en ambos grupos de Tratamiento. H1: La distribución según estatus social NO es homogénea en ambos grupos de Tratamiento. Sesión 2: Inferencia estadística para una población

  25. Servei d’Estadística Universitat Autònoma de Barcelona Sesión 2: Inferencia estadística para una población

  26. Servei d’Estadística Universitat Autònoma de Barcelona Sesión 2: Inferencia estadística para una población

  27. Servei d’Estadística Universitat Autònoma de Barcelona Sesión 2: Inferencia estadística para una población

  28. Servei d’Estadística Universitat Autònoma de Barcelona La sumisión de los investigadores al p-valor La utilización sistemática del p-valor puede llevar a resultados engañosos. EJEMPLO: Se quiere analizar la estancia en días de los turistas en Catalunya. En concreto se desea comparar las estancias de los europeos y los procedentes de países asiáticos. Un contraste en términos de las diferencias se plantea como: H0: d = 0 (no hay diferencia) H1: d0 El p-valor del test estadístico resulta ser p=0,02, con lo que se concluye que hay diferencias. ¿Es suficiente? Necesitamos medir el tamaño del efecto realizando un intervalo de confianza para la diferencia ya que podría ser, por ejemplo, que: d Є (0.5, 1) o bien d Є (10, 15) Sesión 2: Inferencia estadística para una población

  29. ANOVA MULTIFACTORIAL • El ANOVA nos permite analizar el efecto de más de una variable de agrupación sobre una variable cuantitativa. En este caso utilizaremos un ANOVA multifactorial. • La principal ventaja de la realización del ANOVA multifactorial es que, además de poder analizar el efecto de cada una de las variables de agrupación por separado (también conocido como efectos principales de las variables, main effects), nos abre la posibilidad de analizar la interacción (o efecto interactivo). Sesión 2: Inferencia estadística para una población

  30. Between-subjects designs vary independent variables with the subjects, so each subject represents one of the values (levels) of the independent variable. Ex: language, sex, age, etc. Within-subjects designs vary independent variables for each subject, so each subject sees all of the levels of the independent variable. Ex: syllable duration, F0 alignment, etc. Age, for longitudinal studies Between- and within-subjects factors Sesión 2: Inferencia estadística para una población

  31. INTERACCIÓN A x B • Arriba pueden verse tres casos en los que no se produce interacción entre las variables; abajo hay dos casos en los que se produce interacción. Efecto principal para la variable A Efecto principal para la variable B Efectos principales para las variables A y B Interacción A x B sin efectos principales Interacción A x B con efectos principales para ambas variables Sesión 2: Inferencia estadística para una población

  32. EJERCICIO • El grupo de empresas del ejercicio presentado en el capítulo anterior está interesado en estudiar si los distintos tipos de incentivos afectarán a la producción de los operarios de forma diferencial dependiendo del tipo de contrato que tengan. Con este objetivo seleccionan sus cuatro secciones de serigrafía: dos de ellas están compuestas por operarios con contratos temporales y en las otras dos todos los empleados son personal fijo. Los operarios de dos secciones recibirán durante tres meses incentivos de tipo individual, mientras que los operarios de las otras secciones recibirán incentivos en función de la producción alcanzada en la sección. Como medida de la productividad se utiliza para cada operario la diferencia entre el promedio semanal de piezas producidas la primera semana y el promedio semanal producido la última semana del estudio. Sesión 2: Inferencia estadística para una población

  33. A continuación presentamos la tabla de datos: Sesión 2: Inferencia estadística para una población

  34. Sesión 2: Inferencia estadística para una población

More Related